566

Boennelycke M¹, Christensen L², Nielsen L F³, Gräs S¹, Lose G¹

1. Department of Obstetrics and Gynecology, Herlev Hospital, Denmark, **2.** Department of Pathology, Bispebjerg Hospital, Denmark, **3.** Coloplast, Denmark

FRESH MUSCLE FIBER FRAGMENTS ON A SCAFFOLD: A POTENTIALLY NEW CONCEPT FOR PELVIC FLOOR RECONSTRUCTION?

Hypothesis / aims of study

Synthetic, permanent meshes have gained popularity in order to improve outcome of pelvic floor reconstructive surgery, but multiple complications have emerged. Recently, *in vitro* cultured muscle-derived cells seeded on biodegradable scaffolds have been proposed in the treatment of pelvic organ prolapse. However, a biodegradable scaffold with fresh muscle fiber fragments, collected at the time of surgery, may be a simpler and faster approach circumventing the disadvantages of *in vitro* culture of cells.

The aim of this study was to investigate in a rat model if methoxypolyethyleneglycol-poly(lactic-co-glycolic acid) (MPEG-PLGA) scaffolds seeded with either autologous *in vitro* cultured muscle-derived cells (MDC) or autologous fresh muscle fiber fragments (MFF) could be used for tissue repair.

Study design, materials and methods

Twenty scaffolds with autologous *in* vitro cultured muscle-derived cells (MDC) and twenty scaffolds with autologous fresh striated muscle fiber fragments (MFF) were implanted subcutaneously on the abdomen of rats, two in each rat, and examined after 3 (ten of each preparation) and 8 weeks (ten of each preparation). Growth pattern of MDC and MFF was assessed by immonohistochemistry, and biocompatibility was assessed by histopathology. Results

At 3 weeks, both MDC and MFF were identified. However, the growth patterns of the two were different: MDC were finely distributed as single cells within the scaffold, whereas the MFF were localized as fragmented striated muscle fibers beneath the scaffold.

At 8 weeks, fragmented striated muscle tissue was generated from the MFF in six of ten explants, while the MDC had vanished. The scaffolds showed a high degree of biocompatibility, and were present at 3 weeks, but not at 8 weeks. Interpretation of results

Autologous fresh muscle fiber fragments on a MPEG-PLGA scaffold seem to be useful for tissue repair. This technique bypasses the technically demanding, costly and time-consuming *in vitro* processing of muscle-derived cells. Concluding message

This study introduces a promising new concept, namely fresh muscle fiber fragments on a biodegradable scaffold, with possible implications for the surgical reconstruction of pelvic organ prolapse.

Specify source of funding or grant	The Danish National Advanced Technology Foundation
	supported this study.
Is this a clinical trial?	No
What were the subjects in the study?	ANIMAL
Were guidelines for care and use of laboratory animals followed	Yes
or ethical committee approval obtained?	
Name of ethics committee	The Danish Animal Experiments Inspectorate