5

Category No.

29th Annual Meeting

Video Demonstration Denver, Colorado USA

Ref. No.

362

Abstract Reproduction Form B-1

	Double Spacing
	Department of Urology, Hamamatsu University School of Medcine 3600 Hanada-cho, Hamamtsu, Japan
	Double Spacing
<u> </u>	THE DIAGNOSTIC VALUE OF POWER DOPPLER TO PREDICT HISTOLOGICAL COMPOSITIONS IN BENIGN PROSTATIC HYPERPLASIA

AIMS OF STUDY

Recently Power Doppler is used to distinguish prostatic cancer from benign prostatic hyperplasia. The objective of this study is the availability of Power Doppler to predict histological compositions in benign prostatic hyperplasia.

MATERIALS AND METHODS

Thirteen patients were studied. Preoperatively, Power Doppler imaging analysis was performed using ultrasonic diagnostic equipment (SSA 380A, TOSHIBA, Japan) with a transrectal probe. Pulsatile blood flows were detected in all patients and calculate the resistive index (RI). Tissues obtained from 13 patients undergoing transurethral resection, suprapubic prostatectomy or radical cystectomy, were analyzed by quantitative morphometry. Computer image analyses were used to determine the mean area densities of the smooth muscle (SM), connective tissue (CT), glandular epithelium (E), lumen (L) and vascular lumen (V).

RESULTS

Pathological findings represent 3 normal prostate, 9 benign hyperplasia and 1 leiomyoma. The proportions of each histological component are shown in Table 1. Relationships between morphological findings and RI are shown in Table 2. It demonstrated that the increasing grandular component increases RI.

CONCLUSION

The present study demon	nstrates that Pow	er Doppler is	useful to prea	dict the compo	onent of pros		
Table 1. Histolog	gical compos	sition of	the respe	ective com	ponent of		
Area density, %							
Patients	SM	CT	E	L	v		
BPH (n=9)	25.6±1.8	30.5±3.0	15.1±1.9	16.0±3.3	7.5±1.1		
Normal (n=3)	41.3±3.0	35.4±5.2	6.3±1.8	3.0±1.0	7.0±0.4		
Leiomyoma (n=1)	59.5	29.0	0	0	2.2		

Table 2. Correlation between relative volume of each histological component and resistive index (RI).

	resistive index (RI)		
Tissue elements	R	p value	
Stromal component	-0.796	0.0011	
Smooth muscle	-0.537	0.0718	
Fibrous tissue	-0.717	0.0068	
Glandular component	0.688	0.0114	
Glandular epithelium	0.634	0.0249	
Glandular lumen	0.627	0.0272	
Vascular lumen	0.428	0.1698	