133	
Authors:	Keijiro Shuto, Atushi sone, Kenji Shirotani, Masashi Katsura,Masaaki Morioka, Seitaro
	Ohkuma and Hiroyoshi Tanaka.
Institution:	Departments of Urology and Pharmacology, Kawasaki Medical School,
Title:	NITRIC OXIDE(NO) INDUCES [45Ca2+] INFLUX VIA L-TYPE VOLTAGE-DEPENDENT
	Ca2+ CHANNELS (VDCCs) ACTIVATION IN BLADDER SMOOTH MUSCLE CELLS

Aims of Study and Methods:

Numerous studies have indicated that Ca^{2+} transient in smooth muscle cells is mediated by Ca^{2+} entry through L-type VDCCs. On the other hand, NO is assumed to induce Ca^{2+} influx into neuronal and peripheral cells prior to generating Ca^{2+} -dependent intracellular functions including neurotransmitter releases. In the present study, functional involvement of VDCCs on NO-induced [⁴⁵Ca²⁺]influx was investigated using rat urinary bladder smooth muscle cells in primary culture.

Results:

S-nitroso-N-acetylpenicillamine (SNAP) induced time- and dose-dependent increases in [$^{45}Ca^{2+}$]influx, which was completely abolished by hemoglobin, suggesting a potential of NO to induce Ca²⁺ influx into bladder smooth muscle cells. The NO-induced [$^{45}Ca^{2+}$]influx was significantly inhibited by membrane stabilizing agents such as tetrodotoxin and lidocaine. Similar patterns of [$^{45}Ca^{2+}$]influx were observed in the cells stimulated by 50 mM KCl. In addition, L-type VDCC inhibitor, verapamil, completely abolished the [$^{45}Ca^{2+}$]influx induced by NO and Bay k-8644, an activator selective to L-type VDCCs.

Conclusions:

These results indicate that NO induces [⁴⁵Ca²⁺]influx into urinary bladder smooth muscle cells is mediated via activation of the L-type VDCCs subsequent to membrane depolarization.