136

Kim D K^1 , Kim J C^2 , Kim K M^3

1. Eulji University Hospital, 2. Kangnam St. Mary's Hospital, 3. Seoul National University Hospital

EFFECTS OF INTERFERON-GAMMA ON TRANSFORMING GROWTH FACTOR-BETA 1 EXPRESSION IN THE PARTIALLY OBSTRUCTED URINARY BLADDER OF RAT

Aims of Study

Change of bladder compliance in bladder outlet obstruction is closely related to collagen deposition in bladder wall (1). Transforming growth factor-ß1 has been known as a key molecule in regulation of collagen deposition in various tissues (2, 3). The objective of this study was to investigate the alteration of transforming growth factor-ß1 expression with interferon-? administration in the partially obstructed bladder.

Methods

Partial bladder outlet obstruction was induced in adult female Sprague-Dawley rats (body weight 200-250gm) according to the method described by Uvelius (4). The same procedure without urethral ligation was applied to the sham control group. After 2 weeks periods of partial bladder outlet obstruction, recombinant interferon-? (100,000 units/day, LG chemical Co.) was administered subcutaneously once daily for another 2 weeks. After 4 weeks from initial bladder outlet obstruction, bladder tissues were evaluated for collagen deposition by Masson's trichrome staining, transforming growth factor-ß1 activity by immunohistochemical staining, and transforming growth factor-ß1 mRNA activity by reverse transcriptase polymerase chain reaction.

Results

After 4 weeks of partial bladder outlet obstruction, there were intensified collagen staining especially in the interfascicular regions and moderate staining in the pericellular regions. After interferon-? administration for 2 weeks, collagen deposition was reduced; interfascicular collagen deposition to moderate degree and intercellular collagen deposition to almost undetectable level. After 4 weeks of partial bladder outlet obstruction, immunohistochemical staining for transforming growth factor-ß1 showed moderate degree depositions in the interfascicular regions, which were decreased with interferon-? administration. In the partially obstructed bladders, transforming growth factor-ß1 mRNA activity was increased 1.9 folds compared to that of sham control group. This increased transforming growth factor-ß1 mRNA activity was decreased to 1.2 folds with interferon-? administration (p<0.05).

Conclusions

Recombinant interferon-? administration decreased collagen deposition and transforming growth factor-ß1 activity in the partially obstructed rat bladder. This is partially due to down regulation of transforming growth factor-ß1 gene expression.

<u>References</u>

1. Loss of elasticity in dysfunctional bladders; urodynamic and histochemical correlation. J Urol 1994; 152: 702-5.

2. A strategy for determining the pathogenesis of systemic sclerosis: transforming growth factor ß, the answer? Arthritis Rheum 1989; 32: 817-25.

3. Transforming growth factor ß in tissue fibrosis. New Engl J Med 1994; 331: 1286-92.

4. Collagen content in the rat urinary bladder subjected to infravesical outflow obstruction. J Urol 1984; 132: 587-90.