251

Ruthmann O¹, Karcz W¹, Goldschmidboeing F², Lehmke T², Katzenwadel A³, Schmidt T⁴, Hopt U T¹, Schrag H¹ **1.** Department of General- and Visceral Surgery Universityhospital Freiburg, **2.** Institute of Microsystems Technology (IMTEK) Microsystems Design, Albert-Ludwigs-University of Freiburg, Germany., **3.** Department of Urology, University Hospital, Albert-Ludwigs- University of Freiburg, Germany, **4.** German Aerospace Center, Institute of Robotics and Mechatronics, Oberpfaffenhofen-Wessling, Germany

GERMAN ARTIFICIAL SPHINCTER SYSTEMS - GASS III: THE FIRST GENERATION OF REMOTE-CONTROLLED ARTIFICIAL SPHINCTER PROSTHESIS FOR THE THERAPY OF HIGH-GRADE FAECAL AND URINARY INCONTINENCE

Hypothesis / aims of study

We developed the first model of remote-controlled and automatically operated sphincter prosthesis for therapy of different incontinence disorders through microsystems technology.

Study design, materials and methods

The prototype integrates a fluid reservoir, a novel silicon high-power micropump designed based on multilayer piezo-technology, an online pressure management and a microprocessor controls in a single unit. The peristaltic silicon micropump consisted of three membranes, two small valve membranes and one a larger pump membrane. Different sizes of inflatable bodies are suitable for connection. A transcutaneous energy- and data transfer system (TET) was integrated.

<u>Results</u>

The system fulfills the following requirements: high flow rate (3,4 ml/min at 36Hz), maximum possible backpressure of 60.5 kPa, bidirectional operation, an absolutely bubble-tolerance, a small size for subcutaneously implantation and a low energy consumption (90 mWh/day). At present, the operation time is estimated at about 7-10 days without transcutaneously recharging of the battery.

Interpretation of results

We could show that 330 million cycles of the silicon membrane actuators (corresponding a life-time of 10 years) did not result in fatigue or breakage of material. The integrated fluid reservoir contains a volume of 20 cc. Furthermore, the telemetric interface guarantees a freely application programming for different therapies and a comfortable remote control for the patient.

Concluding message

GASS is the first remote-controlled prosthesis which is designed either for therapy of major fecal incontinence or placement around the urethra in patients with urinary incontinence.

Specify source of funding or grant	Artificial Sphincter Prothesis, incontinence,
Is this a clinical trial?	No
What were the subjects in the study?	NONE