100

Broquères-You D¹, Behr-Roussel D¹, Oger S¹, Compagnie S¹, Caisey S¹, Denys P², Chartier-Kastler E³, Giuliano F⁴

1. Pelvipharm, 2. Raymond Poincare Hospital, 3. La Pitie Salpetriere Hospital, 4. Pelvipharm & Raymond Poincare Hospital

RHO-KINASE INHIBITION IMPACTS NEUROGENIC DETRUSOR OVERACTIVITY IN CHRONIC SPINALIZED RATS

Hypothesis / aims of study

Spinal cord injury (SCI) severely disrupts normal bladder function by inducing neurogenic detrusor overactivity (NDO). First line SCI-induced NDO treatments i.e. antimuscarinics often associated with intermittent catheterization are somewhat limited by a mild to moderate clinical efficacy and a significant incidence of side effects. Thus the development of new effective drugs for the treatment of NDO is of crucial importance. Rho-kinase has a central role in the regulation of detrusor smooth muscle contraction since components of the rhoA/rho-kinase signalling pathway are involved in the Ca²⁺-sensitization of the smooth muscle ¹. Moreover, in *vitro* and *in vivo* data from animal models of overactive bladder (OAB) indicate that rho-kinases are involved in pathophysiological mechanisms responsible for OAB ^{2,3}. Thus, we aimed to evaluate the effects of a rho-kinase inhibitor (Y-27632) on urodynamic parameters in rats with chronic SCI.

Study design, materials and methods

Complete T7-T8 spinal cord transection was performed in 17 female adult Sprague-Dawley rats (250-275g). At 3-4 weeks post-SCI, cystometry was performed in conscious rats to determine the effects of Y-27632 (150 µg/kg, intravenous injection, iv, n=7) and vehicle (saline, iv, n=10) on the following urodynamic parameters: maximal amplitude of micturition pressure (**MP**); baseline intravesical pressure (**BP**); delta pressure threshold for inducing micturition (**delta PT**); intercontraction interval, (**ICI**); **voided volume**; **amplitude of non-voiding contractions** (NVC) and **the volume threshold** necessary to initiate NVC. The effects of Y-27632 or vehicle were observed during a treatment period of 60 min. The results were expressed as percentage of baseline value during the control period i.e before Y-27632 or saline iv injection.

Results

Y-27632 significantly increased voided volume (p< 0.01) whereas it did not modify MP, BP, delta PT and ICI. Voided volume reached 117±9% of baseline at 60 min after Y-27632 injection versus 96±4% of baseline for vehicle. The amplitude of NVC was significantly decreased by 43.1% and 17.6% at 30 min and 60 min after Y-27632 administration, respectively when compared to vehicle (p<0.001). In addition, Y-27632 significantly increased the volume threshold of NVC (p< 0.05). At 30 min and 60 min after Y-27632 injection, it was increased by 117.4% and by 166.3% when compared with vehicle.

Interpretation of results

These results indicate that acute Y-27632 treatment exerts an inhibitory effect on NVC characteristic of NDO. This could be due to the fact that inhibition of rho-kinase by Y-27632 has been shown to reduce Ca²⁺-sensitization of detrusor smooth muscle cells resulting in decreased detrusor contractility ¹. Thus, Y-27632 could exert its effect on NVCs by directly impacting detrusor smooth muscle tone. The rat model of SCI displays not only NDO but also detrusor-sphincter-dyssynergia associated with an inefficient bladder emptying as it is the case in human. Interestingly, Y-27632 significantly increased the voided volume without modifying MP and ICI. A previous study indicates that components of the rhoA/rho-kinase signalling dynamically regulate urethral smooth muscle tone ². Thus, the effect of Y-27632 on voided volume could be due to a relaxing effect on the urethra during micturition allowing a better bladder emptying.

Concluding message

The present study demonstrates that inhibition of rho-kinase alters the urodynamic parameters related to NVC and enables a better bladder emptying in the rat model of SCI-induced NDO associated with DSD. This supports the potential development of rho-kinase inhibitors for the treatment of NDO.

References

- 1. Teixeira et al, Biochem Pharmacol. 2007
- 2. Rajasekaran et al, Neurourol Urodyn 2005
- 3. Kim et al, American Urological Association Atlanta, USA. 2006

Specify source of funding or grant	No
Is this a clinical trial?	No
What were the subjects in the study?	ANIMAL
Were guidelines for care and use of laboratory animals	Yes
followed or ethical committee approval obtained?	
Name of ethics committee	Animal Care Regulations in force in France as of 1988 (authorization from
	competent French Ministry of Agriculture - Agreement No. A91-471-109,
	November 2008)