ALTERED CAMP-MEDIATED POTASSIUM CHANNEL CURRENTS IN DETRUSOR MYOCYTES FROM DIABETIC RATS

Hypothesis / aims of study

More than 50% of diabetic patients have bladder dysfunction that is associated with a range of cystopathic (i.e., bladder) conditions. Detrusor overactivity is a frequent urodynamic finding, with a reported prevalence of 39% to 76%.[1] The goal of these studies was to further explore the myogenic basis for diabetes (DM)-related bladder dysfunction. In this regard, potassium (K^+) channels regulate smooth muscle excitability by maintaining the resting membrane potential and promoting repolarization of the cell membrane.[2,3] The second messenger signalling molecule cyclic AMP (cAMP) has been implicated in the modulation of potassium channel activity in smooth muscle cells. Our hypothesis is that alterations of K⁺ channel function play an important role in the pathogenesis of a number of smooth muscle-related diseases including the urologic complications of diabetes. Therefore, the aim of this study was to investigate cAMP-mediated regulation of K⁺ channel function in detrusor myocytes in diabetic, insulin-treated and age-matched control rats using patch clamp techniques.

Study design, materials and methods

We evaluated K^+ channel function and cAMP-mediated regulation in short term cultures of detrusor myocytes derived from urothelial denuded bladders of 2-month streptozotocin (STZ)-diabetic (DM) and age-matched control rats. Cell cultures (passages 1-3) were derived from male F344 rats in the following 3 groups, DM (n= 4 rats), insulin (IN)-treated DM (n=4 rats), and an agematched control group (AMC; n=4 rats). Whole-cell membrane currents were recorded using a conventional patch clamp technique. Cells were voltage clamped at -70 mV and I-V curves were performed in 10 mV increments ranging from -60 mV to + 100 mV. Cells were subjected to 6 consecutive I-V curves. Following a control I-V curve, cells were exposed to the following drugs at 10-15 minute intervals: 1) 1 mM 8-Br-cAMP, 2) 100 nM IBTX (BK block), 3) 10 μ M glybenclamide (K_{ATP} block), 4) 100 μ M 4-AP (K_v block), and 5) 100 nM apamin (SK block). The voltage protocol was generated by pclamp9 (Axon Instruments). The recordings were stored as pclamp9 files with a four-channel digitizing unit, and analyzed with clampfit9.2.

Results

We observed a statistically significant DM-related, insulin (IN)-reversible, increase in resting membrane potential (from -45 \pm 3 (AMC) to -33 \pm 2 mV (DM) to -40 \pm 5 (IN)) and a corresponding decrease in cAMP-induced whole cell K⁺ current and current density (p<0.05, 2-Way ANOVA for repeated measures) (Table 1; Figure 1). A significant DM-related decline in the IBTX-sensitive portion of the whole cell K⁺ current, and a significant increase in the 4-AP sensitive-portion of the whole cell outward K⁺ currents (p<0.05) was also noted.

 Current (pA)
 Currents in detrusor myocytes.

 Current (pA)
 Current detrusor myocytes.

	Current (pA)		Capacitance	e Current density (pA/pF)	
	Before cAMP	After cAMP	<u>(pF)</u>	Before cAMP	After cAMP
AMC (n=11)	<u>359±52</u>	<u>721±100^a</u>	<u>26±2.6</u>	<u>15.3±3</u>	<u>32±7.2^a</u>
<u>DM (n=14)</u>	<u>260±34</u>	400±45 ^{a,b}	<u>29±2</u>	<u>9.4±1.5</u>	<u>14±1.8^b</u>
<u>IN (n=11)</u>	<u>332±52</u>	<u>555±53^a</u>	<u>33±2.5</u>	<u>11.3±2.2</u>	<u>18.9±3^{a,b}</u>

a: Significantly different from control in the same group (Two Way RM ANOVA).

b: Significantly different from same condition in AMC (Two Way RM ANOVA).

Interpretation of results

There are at least 4 distinct K channel subtypes found in detrusor myocytes that are apparently differentially impacted by STZdiabetes. Of note, these studies document significant DM-related alterations in the resting potential and whole cell cAMP-stimulated K+ currents and current density. Such observations are consistent with increased detrusor myocyte excitability. These data provide novel mechanistic insight into diabetes-related changes in detrusor myocytes that may be of therapeutic value.

Concluding message

These studies indicate the presence of a significant diabetes-related K channelopathy in detrusor myocytes that may contribute to increased detrusor myocyte excitability, and thus explain, at least in part, diabetes-related detrusor overactivity.

References

- 1. Sarma AV, Kanaya AM, Nyberg LM, Kusek JW, Vittinghoff E, Rutledge B, Cleary PA, Gatcomb P, Brown JS. Urinary incontinence among women with type 1 diabetes--how common is it? J Urol. 181(3):1224-30, 2009
- Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol. 83(3):215-42, 2005
- Hristov KL, Cui X, Brown SM, Liu L, Kellett WF, Petkov GV. Stimulation of beta3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels. Am J Physiol Cell Physiol. 295(5):C1344-53, 2008

Specify source of funding or grant	NIH- DK60037
Is this a clinical trial?	No
What were the subjects in the study?	ANIMAL
Were guidelines for care and use of laboratory animals followed	Yes
or ethical committee approval obtained?	
Name of ethics committee	Wake Forest University ACUC