Eichhorn B¹, Wowtscherk M¹, Propping S², Wirth M², Ravens U¹, Wuest M³

1. Department of Pharmacology and Toxicology, Dresden University of Technology, Germany, 2. Department of Urology, Medical School - Dresden University of Technology, Germany, 3. Department of Oncology, University of Alberta, Canada

(-ADRENOCEPTOR-MEDIATED ACTIVATION OF BKCA CHANNELS IN URINARY BLADDER SMOOTH MUSCLE CELLS

Hypothesis / aims of study

Urinary bladder smooth muscle relaxation is the main goal during therapy of overactive bladder (OAB). Muscarinic receptor antagonists are still the gold standard in treatment of OAB, but because of high incidence of side effects and low patient compliance alternative drug targets have been discussed during the recent years. Detrusor relaxation can also be induced by activation of either β -adrenoceptors^[1,2] elevating cyclic AMP levels, or by promoting calcium-activated potassium channels with large conductance (BK_{Ca} channels) that hyperpolarizes the cells^[3].

Here we have studied the interaction between β -adrenoceptor stimulation and BK_{Ca} channel activity in freshly isolated detrusor smooth muscle cells (DSMCs). We have focused on the involved β -adrenoceptor subtypes since this is of interest for estimation of tissue specificity.

Study design, materials and methods

Potassium currents through BK_{Ca} channels (I_{BKCa}) were measured with standard voltage-clamp technique in freshly isolated murine vascular smooth muscle cells (VSMCs) and DSMCs from mouse, pig and man. I_{BKCa} was measured at room temperature (22°C). A system for rapid solution changes allowed addition of test compounds in the close vicinity of the cells. β -Adrenoceptors were stimulated with the non-selective agonist (-)-isoprenaline and the effects on BK_{Ca} channels were measured as changes of I_{BKCa} current amplitude. The following subtype selective antagonists were used as tools: β_1 -adrenoceptor antagonist CGP 20712A (300 nM) and β_2 -adrenoceptor antagonist ICI 118,551 (50 nM).

Results

 BK_{Ca} currents were identified smooth muscle cells. Stimulation of β-adrenoceptors with (-)-isoprenaline activated BK_{Ca} channels in a concentration-dependent manner (-logEC₅₀[M]: murine VSMCs (n=10)**DSMCs** 7.0 0.2 (n=3),7.3 +0.3 0.2 (n=7) in pig, 6.7 \pm 0.4 (n=4) in man). CGP 20712A not significantly affect the did (-)-isoprenaline-evoked effect on BK_{Ca} current. In contrast, ICI 118,551 completely abolished the (-)-isoprenaline-mediated increase of BK_{Ca} current in smooth muscle cells from mouse and pig, but not in human urinary bladder cells. These results suggest that β₂adrenoceptors are involved in murine and porcine, but not in human smooth muscle cells.

Table: Effects of β -adrenoceptor-agonist and -antagonists on BK_{Ca} current amplitude

	VSN	VSMC		DSMC					
	Mouse		Mouse		Pig		Man		
	n	E _{max} (%)	n	E _{max} (%)	n	E _{max} (%)	n	E _{max} (%)	
Control	14	100	28	100	12	100	27	100	
1 μM (-)-Isoprenaline	5	161±24*	20	128±18**	6	194±49*	12	114±12***	
1 μM (-)-Isoprenaline + 300 nM CGP20712A	4	158±29*	4	131±21**	3	185±51*	3	130±28**	
1 μM (-)-Isoprenaline + 50 nM ICI 118,551	5	99±15	4	98±8	3	97±30	12	125±13***	

^{*} p<0.05, **p<0.01, ***p<0.001 substance versus control, ratio paired *t*-test

Interpretation of the results

Activation of BK_{Ca} channels is mediated via β_2 -adrenoceptors in smooth muscle cells from mouse and pig, but not from human urinary bladder. Opening of human detrusor

BK_{Ca} channels probably requires β_3 -adrenoceptors.

Concluding message

(-)-isoprenaline-evoked summary BK_{Ca} channel activation mediated through β_2 -adrenoceptors murine and porcine smooth muscles. whereas detrusor in human β₃-adrenoceptors are probably involved. Therefore, when targeting β-adrenoceptors for therapy of OAB the following aspects are of β-Adrenoceptor-mediated importance: (i)

 BK_{Ca} channel activation should be characterized in various smooth muscle tissues, i.e. detrusor and blood vessels and (ii) organ selectivity of BK_{Ca} channel activation could be transferred by different β -adrenoceptor subtypes.

References

- 1. JPET (2009) 328(1):213-222
- 2. Br J Pharmacol (2006) 147(2):88-119
- Pharmacol Ther (2006) 110(1):103-116

Specify source of funding or grant	This work was funded by the Pfizer OAB Competitive Grant Program 2007.
Is this a clinical trial?	No

What were the subjects in the study?	HUMAN				
Was this study approved by an ethics committee?	Yes				
Specify Name of Ethics Committee	All patients had given informed written consent in accordance with the regulations of the local hospital ethical committee (permission no. EK 194092004). All animal experiments were performed in accordance to the regulations of the local legislation committee (permission 24-9168.24-1-2002-8 of the Dresden Regierungspräsidium).				
Was the Declaration of Helsinki followed?	Yes				
Was informed consent obtained from the patients?	Yes				