505

Yoshikawa S¹, Kanie S¹, Kobayashi R¹, Nakajima M¹, Hasebe K¹, Nakao K¹, Hayashi R¹, Mochizuki H¹, Matsumoto R², Otsuka A², Ozono S², Yoshimura N³

1. Toray Industries, Inc., **2.** Hamamatsu University School of Medicine, **3.** University of Pittsburgh School of Medicine

TRK-380, A NOVEL B3 ADRENOCEPTOR (AR) AGONIST, DECREASES VOIDING FREQUENCY IN RATS WITH FORMALIN-INDUCED POLLAKIURIA AND SUPPRESSES THE NON-VOIDING CONTRACTIONS(NVCS) IN BLADDER OUTLET OBSTRUCTION (BOO)

Hypothesis / aims of study

It has been reported that β_3 -ARs potentially play an important role in urine storage due to the relaxation of bladder in humans (1); therefore, β_3 -AR agonist is considered to be a candidate drug for the treatment of overactive bladder (OAB). In rats as well as dogs and humans, β -ARs (β_3 -ARs and β_2 -ARs) also play an important role in the relaxation of bladder (2). The aim of this study is to clarify the effects of TRK-380, a selective β_3 -AR agonist, on natural voiding behaviors in rats with formalin-induced pollakiuria or bladder outlet obstruction (BOO) in order to evaluate its therapeutic efficacy for OAB.

Study design, materials and methods

In a natural voiding behavioral study, female SD rats were intravesically pre-treated with 2.5% (0.2 mL for 2 min) formalin under isoflurane anesthesia. Next day, TRK-380 (7.5, 15, and 30 mg/kg, p.o.) or tolterodine (3.25, 7.5, and 15 mg/kg, p.o.), an anti-cholinergic drug, was administered and their voiding behavior was monitored with an acquisition system connected to a balance. In the study with BOO rats, the urethra was partially obstructed with a 4-0 nylon suture in the presence of a tungsten rod (O.D.: 1 mm) placed alongside the urethra in female SD rats. Six weeks later, cystometry was performed during intravesical infusion of saline (10 mL/hr) in the conscious condition. After stable voiding intervals were obtained, TRK-380 (1 and 3 mg/kg, iv) or oxybutynin (0.3-3 mg/kg, iv), an anti-cholinergic drug, was administered to BOO rats, and then the effects of drugs on the number of non-voiding contractions (NVC, > 4 cm H₂O) and on the micturition pressure were investigated.

Results

In the voiding behavioral study, rats pre-treated with intravesical infusion of formalin showed a significant increase in voiding frequency compared to the vehicle-treated group, which was dose-dependently and significantly attenuated by TRK-380 within 1 hour after oral administration (Fig. 1). In the study with BOO rats, TRK-380 significantly decreased the number of NVC during cystometry (Fig. 2a). On the other hand, micturition pressure was unaffected with the TRK-380 treatment (Fig. 2b). Oxybutynin did not decrease the number of NVCs, but significantly attenuated the micturition pressure.

Interpretation of results

TRK-380 is shown to induce decreased voiding frequency in rats with formalin-induced pollakiuria and suppression of the NVCs in BOO rats, which are possibly caused by its relaxing effects on detrusor smooth muscle via β_3 -ARs.

Concluding message

These data suggest that TRK-380 is able to ameliorate storage symptoms in patients with OAB. Especially, the present results of TRK-380 in the BOO model showing the reduction of NVCs without affecting micturition pressure are important because the use of anti-cholinergic drugs for the treatment of OAB is limited in patients with obstructive symptoms due to BPH. Therefore TRK-380 might be a promising drug for the treatment of OAB symptoms including those associated with BPH.

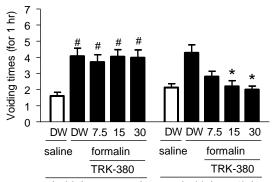
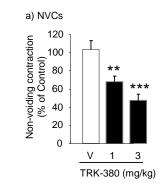
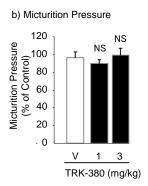




Fig.1(voids/#REAVGRASPA) TRK-(valids/most/old/mg behaviors in rats with formalin-induced pollakiuria (N=15).

Fig.2 Effect of intravenous TRK-380 on NVCs (a) and micturition pressure (b) in BOO rats (N=6-8).

- References
 1. Takeda M. et al., J Pharmacol Exp Ther (1999) 288: 1367-73
 2. Yamazaki Y. et al., Br J Pharmacol (1998) 124: 593-9

Specify source of funding or grant	NONE
Is this a clinical trial?	No
What were the subjects in the study?	ANIMAL
Were guidelines for care and use of laboratory animals followed	Yes
or ethical committee approval obtained?	
Name of ethics committee	The ethical committee of Research & Development Division,
	Toray Industries, Inc.