622 Diez Itza I¹, Arrue M¹, Ibañez L¹, Paredes J¹, Murgiondo A¹, Belar M¹, Sarasqueta C¹ *1. Hospital Donostia*

FACTORS INVOLVED IN THE DETERIORATION OF PELVIC FLOOR MUSCLE CONTRACTION STRENGTH SIX MONTHS AFTER FIRST VAGINAL DELIVERY

Hypothesis / aims of study

Vaginal delivery involves muscular distension, laceration, isquemia and neural trauma, all of them being possible mechanisms by which injury can occur. This damage can lead to anatomical and functional changes of the pelvic floor muscles (PFM) after childbirth.

The aim of the study was to evaluate pelvic floor contraction strength changes after vaginal delivery and also to analyse the risk factors involved in the deterioration of PFM function.

	Deterioration contraction strength	of six	PFM months	P value	Study materials		sign, and
Constitutional, labor and delivery variables	postpartum				<u>methods</u> A pro	nsne	ctive
				-	cohort st undertake evaluate influence	udy en	
vaginal delivery on pelvic floor muscles function. The study g	oup was selected from	n the	e primigra	vid wome			

vaginal delivery on pelvic floor muscles function. The study group was selected from the primigravid women, who came to give birth at our Public Health Hospital from April to October, 2007. The exclusion criteria were: multiple pregnancy, gestational age of less than 37 weeks, previous urogynecological surgery, urogynecological malformations and neurological disorders. Women who were delivered by scheduled caesarean section were initially excluded and the ones who were delivered by intrapartum caesarean section were subsequently excluded.

PFM contraction strength was evaluated in pregnant women at term and six months after delivery. It was first carried out during a manual examination and a score from 0-5 was given according to the modified Oxford Grading System¹. Examination was performed in the lithotomy position. Women unable to perform at least a moderate pelvic floor contraction after instruction (Oxford < 3) were excluded from the study. Vaginal pressure was then evaluated using a perineometer (Peritron®) measuring the strongest of three voluntary pelvic floor contractions as has been previously reported². We defined a deterioration of pelvic floor contraction strength in the follow-up visit as a decrease equal or more than 10 cm H₂O between the value at inclusion and six months after delivery.

To investigate the risk factors associated with a decrease in PFM contraction strength, we analyzed the following variables: age; height; weight; use of oxytocin, epidural anaesthesia; second stage of labor and active pushing time; mode of delivery; episiotomy; 3rd and 4th degree perineal tears; birth weight and cephalic perimeter of the newborn; and pelvic floor muscle training up to at least 3 months postpartum. Information about labor and delivery was collected from the clinical charts.

Statistical analyses were used for mean comparison (Student's test, ANOVA) and proportion comparison (Chi-square and Fisher test). A multivariate logistic regression model was used to assess the relationship between the decrease of pelvic floor function strength and the variables described above.

Results

We enrolled 243 pregnant women at term who were able to perform an adequate pelvic floor muscle contraction and had a vaginal delivery. Of those, 215 (88.5%) attended the six months follow up visit, forming the study group. Mean age was 31.3 years (range:18-43) and mean BMI was 23.0 (range:15.9-44.2). Vaginal delivery was spontaneous in 149 (69.3%) women and instrumental in 66 (30.7%).

The manual testing score of PFM contraction strength at inclusion was 3 in 109 (50.7%) women, 4 in 82 (38.1%), and 5 in 24 (11.2%). Perineometry gave a mean value and a standard deviation (SD) of 35.3 ± 10.2 in women with manual testing score 3; 49.3 ± 12.6 in the ones with score 4; and 72.9 ± 22.4 in those with score 5. Six months after delivery 70 (32.6%) women had a decrease of 10 cm H₂O or more in PFM contraction strength measured by perineometry.

We performed a univariant analysis to associate the deterioration of PFM contraction strength with different variables. Second stage of labor and active pushing were categorised in two groups. The results are shown in table 1. A multiple logistic regression model was performed with the variables near to statistical significance ($p \le 0.2$). PFM training was included as a potential confounding factor. We observed that deterioration of PFM contraction strength six months after vaginal delivery was significantly increased among the older women (OR: 1.15; 95% CI:1.04-1.28) and those who had an instrumental vaginal delivery (OR: 5.27; 95% CI:2.47-11.26). We did not find any statistical association with the other variables.

Table 1 Results of the univariant analysis performed to associate the deterioration of PFM contraction strength six months after first vaginal delivery with different variables.

		No (n=145)	Yes (n=70)	_	BMI: body mass index (*) Fisher test
Age (years)	mean, SD	30.5 ± 3.8	32.8 ± 3.4	0.000	- Interpretation of results
BMI	mean, SD	23.2 ± 4.0	22.6 ± 2.9	0.23	PFM contraction strength
Use of oxytocin	n, %	109 (75.2)	61 (87.1)	0.04	decreases after vaginal delivery in
Epidural anaesthesia	n, %	137 (94.5)	66 (94.3)	0.95	up to 32.6%. Older women and those delivered
2 nd stage of labor ≥ 2 hours	n, %	39 (26.9)	30 (42.9)	0.019	instrumentally are more at risk.
Active 2 nd stage of labor ≥ 1 hour Mode of delivery	n,%	6 (4.1)	10 (14.3)	0.008	<u>Concluding</u> <u>message</u> We have identified
Spontaneous vaginal delivery	n, %	119 (79.9)	30 (20.1)	0.000	increasing age and instrumental
Instrumental vaginal delivery	n, %	26 (39.4)	40 (60.6)		vaginal delivery as independent risk
Episiotomy	n, %	108 (74.5)	59 (84.3)	0.10	factors associated with a
3 rd or 4 th degree tears	n, %	1 (0.7)	3 (4.3)	0.10*	deterioration of PFM contraction strength six
Birth weight (g)	mean, SD	3283 ± 423	3330 ± 478	0.49	months after first delivery.
Cephalic perimeter of the newborn (cm)	mean, SD	34.2 ± 1.3	34.6 ± 1.5	0.07	changes due to ageing and the increased perineal

injury during instrumental vaginal delivery may be involved. Efforts should be directed at encouraging these women to exercise their pelvic floor.
<u>References</u>
1. Laycock J. Nursing (Lond) 1991; 4(39):15–17
2. Frawley HC, Galea MP, Phillips BA, Sherburn M, Bø K. Neurourol Urodyn 2006; 25:236–242

Specify source of funding or grant	This study is part of a research project supported by The				
	Spanish Health Department, Fondo de Investigación Sanitaria del				
	Instituto de Salud Carlos III (PI070261).				
Is this a clinical trial?	No				
What were the subjects in the study?	HUMAN				
Was this study approved by an ethics committee?	Yes				
Specify Name of Ethics Committee	Medical Ethics and Investigation Committee of the Hospital				
	Donostia.				
Was the Declaration of Helsinki followed?	Yes				
Was informed consent obtained from the patients?	Yes				