Direct effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat

Aizawa N.1, Wyndaele JJ.2, Homma Y.3, Igawa Y.1

Departments of Continence Medicine1 and Urology2, The University of Tokyo Graduate School of Medicine, Tokyo, Japan. Department of Urology2, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.

Hypothesis / aims

It has been suggested that transient receptor potential vanilloid 4 (TRPV4) in the urothelium affects the afferent pathways innervating the bladder (J Pharmacol Exp Ther 2007; 323: 227-35. J Clin Invest 2007; 117: 3453-62. J Biol Chem 2009; 284: 21257-64). We investigated the effects of GSK1016790A (GSK) and RN1734, a TRPV4 agonist and antagonist, respectively, and P2X-purinoceptor antagonists (TNP-ATP and PPADS) on cystometry (CMG), and the direct effect of GSK and its relationship with capsaicin (Cap)-sensitivity on single unit afferent activities of the primary bladder afferent nerves in rats.

Materials & Methods

- Female Sprague-Dawley rats were used
- CMG measurement
 - 4 days before measurement, catheterization were performed.
 - Conscious and free-moving condition for CMG measurement.
- Cystometric parameters were measured before and after intravesical drug instillation.

Afferent measurement

- Urethane anesthesia (1.5g/kg i.p.).
- Left pelvic nerve was put on an electrode for electrical stimulation.
- A catheter (PE-50) was inserted into the bladder.
- Laminectomy: L6 dorsal roots cut and left split until < 3 fibers.
- A5-fiber: conduction velocity (CV) ≥ 2.5 m/sec, C-fiber: CV< 2.5 m/sec.
- The afferent activity originating from the bladder were identified by electrical stimulation of the pelvic nerve and by bladder filling (0.08 ml/min).
- Then, GSK was instilled intravesically 3 times, and finally Cap was instilled to investigate the relationship with Cap-sensitivity. (*Cap-sensitive” or “Cap-insensitive” afferent activities were classified based on both pressure and volume increases of more or less than 150 % from baseline, respectively, when the bladder was instilled with Cap.)

Results

CMG measurement

- Intravesical instillation of GSK transiently decreased bladder capacity (BC) and voided volume (VV), which were counteracted by pretreatment with RN1734, TNP-ATP, and PPADS (Fig. 1).

Afferent measurement

- The response of A5-fibers (n=8) to bladder filling was not affected by either GSK or Cap. Based on the Cap-sensitivity, C-fibers could be divided into two subtypes: Cap-insensitive (n=14) and Cap-sensitive (n=8). In the Cap-insensitive C-fibers, the response to bladder filling significantly increased with GSK at the first instillation, but the increase attenuated with time. On the other hand, in the Cap-sensitive C-fibers, the response was not significantly affected by GSK (Figs. 2 and 3).

Conclusion

The present results suggest that activation of TRPV4 in the bladder, probably urothelium, facilitates the micturition reflex by P2X-purinoceptor-mediated activation of the mechanosensitive Cap-insensitive C-fibers of the primary bladder afferents in rats.

Contact us: Professor and Chairman: Yasuhiyo IGAWA, M.D., Ph.D., Department of Continence Medicine, The University of Tokyo Graduate School of Medicine. E-mail: yigawa-jua@umin.ac.jp Tel & Fax: +81 3 5800 9792

Fig. 1. Representative CMG recordings in a conscious free-moving rat before and during intravesical instillation of GSK(A), RN1734(GSK(B), TNP-ATP(GSK(C), and PPADS(GSK(D). BP: bladder pressure. VV: voided volume.

Fig. 2. Representative recordings of bladder pressure and firing rate of the A5(A), Cap-insensitive C(B), and Cap-sensitive C-fiber(C) activities during bladder filling with GSK/Cap. BP: bladder pressure. FR: firing rate.

Fig. 3. Responses of the A5-fibers and Cap-insensitive and Cap-sensitive C-fibers integrated during the whole filling phase based on pressure and volume with intravesical instillation of GSK and Cap.

*p<0.05, **p<0.01: significant difference from Base (two-way ANOVA followed by Tukey’s test)