#781 A NOVEL ENGINEERED SLING TREATS STRESS INCONTINENCE WITHOUT ADHESION FORMATION IN A RAT MODEL

LAB

Marisa C. Vega, MD, Shannon L. Wallace, MD, Shaimaa Maher, PhD, Lan Wang, MD, Mei Kuang, PhD, Tejasvini Malakalapalli, and Margot S. Damaser, PhD

Background

Polypropylene (PP) mesh mid-urethral sling is currently the gold standard surgical repair for stress urinary incontinence (SUI)

- Novel proprietary mesh utilizing expanded PTFE as a base polymer
 - completely redesigned microstructure compared to previously published PTFE slings
 - sintered material; not fiber based
 - inert; will not shrink after implantation like PP
 - mimics PP tensile strength &

Methods & Results cont.

1 Week Study

Timed Removal t-Test: Two-Sample Assuming Unequal Variances				
	Mean (S)	STD		
PP	428.8	109.9		
PTFE	2.7	1.0		
P(T<=t) two-tail		0.002		
Adhes Chi-s	ion Scoring			
Adhes Chi-s	ion Scoring square Test Median	IQR		
Adhes _{Chi-s} PP	ion Scoring square Test Median 2	IQR 0		
Adhes _{Chi-s} PP PTFE	ion Scoring square Test Median 2 0	IQR O O		

PNT / Sham Implant

PNT

PTFE Implant (n

Sham Implant (n

PP Implant (n=5

1 week

(1) timed implant

(2) Adhesion scoring

removal

(3) Histology

PTFE

- compliance
- microporous; <2 x <1µm pores

Aims

- To compare the novel PTFE implant to PP in the treatment of SUI 1. in a pre-clinical rat model both acutely & 6 weeks after implantation
- To compare the novel PTFE implant to PP in the ease of implant 2. extraction, adhesion formation, & induced histological changes 1 week & 6 weeks after implantation

Hypothesis

- Both implants will improve leak point pressure (LPP) in our SUI 1. model both acutely & at 6 weeks.
- The novel PTFE implant will form less adhesions than PP with 2. easier extraction at 1 & 6 weeks.

Methods & Results

- Bilateral pudendal nerve transection (PNT) induced SUI rat model
- ✤ Mesh was prepared to 4x25x0.25 mm & placed under the midurethra via midline laparotomy
- Cystometry (CMG) & LPP were measured via suprapubic catheter
- ✤ Adhesions: scored 0-4 from no adhesions to dense widespread adhesions
- Implant removal was timed
- ✤ Histology: inflammatory response assessed using a 3-point scoring system (H&E). Fibrotic reaction was quantified by collagen infiltration area using ImageJ (Masson's Trichrome).

Acute Study

6 Week Study

Sham PNT PNT Sham PTFE Implant (n=12) Implant PP Implant (n=12) Sham Implant (n=12) (n=12) (1) CMG & LPP (2) Timed implant removal (3) Adhesion scoring (4) Histology

Timed Removal t-Test: Two-Sample		Adhesion Chi-squar	Adhesion Scoring Chi-square Test		
	Mean (S) STD		Median	IQR
PP	683	132	PP	3	0
PTFE	42	23	PTFE	1	0.75
P(T<=t) two-tail	<0.00	001	P(T<=t) two-tail	<0	.0001

Conclusions

- PTFE & PP implants comparably restored the PNT-induced SUI both acutely & after 6 weeks
- PTFE implants created significantly less adhesions after 1 & 6 weeks, enabling faster removal
- PP & PTFE induced similar histologic changes

- Overall, PP & PTFE induced similar histologic changes with increased collagen infiltration and inflammatory response compared to sham.
- PTFE did have the highest inflammatory scoring histologically at 6 weeks; however, these findings did not translate into appreciable clinical differences.
- This novel PTFE implant has the potential to improve SUI, while allowing easy extraction when necessary

References

- 1. Nilsson CG, Palva K, Aarnio R, Morcos E, Falconer C. Seventeen years' follow-up of the tension-free vaginal tape procedure for female stress urinary incontinence. Int Urogynecol J. 2013 Aug;24(8):1265-9. doi: 10.1007/s00192-013-2090-2. Epub 2013 Apr 6. PMID: 23563892
- 2. Karlovsky ME, Kushner L, Badlani GH. Synthetic biomaterials for pelvic floor reconstruction. Curr Urol Rep. 2005;6:376-84.
- 3. Sangster P, Morley R. Biomaterials in urinary incontinence and treatment of their complications. Indian J Urol. 2010 Apr;26(2):221-9. doi: 10.4103/0970-1591.65394. PMID: 20877601; PMCID: PMC2938547.
- 4. Nanoscopic mesh imaging was performed in part at the Montana Nanotechnology Facility, an NNCI member supported by NSF Grant ECCS-2025391