Osano A¹, Ito Y¹, Yamada S¹

1. School of Pharmaceutical Sciences, University of Shizuoka

CHARACTERIZATION OF ENDOTHELIN-1 RECEPTORS IN THE RAT BLADDER BY RADIOLIGAND BINDING ASSAY

Hypothesis / aims of study

Endothelin (ET)-1 is a 21 amino acid, ensogenous vasoactive peptide that binds to two receptor subtypes, namely ET_A and ET_B receptor. ET-1 induces prolonged contractile responses in isolated bladder muscle strips in various sepcies [1]. ET-like immunoreactivity was identified in detrusor smooth muscles, epithelium and vascular endothelimum [2]. Selective ET_A receptor antagonists has ameliorating effects on various urinary dysfunctions including benign prostatic hyperplasia [3]. Based on these pharmacological results, the current study aimed to identify directly and characterize ET-1 receptors in the bladder by radioligand binding assay using [125]ET-1 as a selective radioligand of the receptor.

Study design, materials and methods

Endothelin-1 receptors in the rat bladder homogenates were measured by the radioligand binding assay using $[^{125}I]ET$ -1, and binding parameters of apparent dissociation constant (K_d) and maximal number of binding sites (B_{max}) for $[^{125}I]ET$ -1 were estimated by nonlinear regression analysis using Graph Pad Prism. The competitive inhibitory effects of specific $[^{125}I]ET$ -1 binding in the rat bladder were measured in the presence of various concentrations of ET-1 and its receptor antagonists (bosentan, ambrisentan and CI-1020). The IC_{50} representing the molar concentration of agents necessary to displace 50 % of specific $[^{125}I]ET$ -1 binding was estimated. Specific $[^{125}I]ET$ -1 binding was also comparatively measured in the cerebral cortex, lung, heart and kidney of rats

Results

Specific binding of [125 I]ET-1 in the rat bladder homogenates was saturable and of high affinity (K_d =110 pM, B_{max} =272 fmol/mg protein), which characterized a selective labeling of bladder ET-1 receptors. High affinity of specific [125 I]ET-1 binding was also detected in the cerebral cortex, lung, heart and kidney of rats, and K_d and B_{max} values showed some difference among tissues (Table 1). ET-1 and bosentan (a mixed ET_A and ET_B receptor antagonist) at the concentrations of 0.3-100 nM inhibited specific [125 I]ET-1 binding in the rat bladder in a concentration-dependent manner (Fig. 1), and their IC₅₀ values were 5.75 and 8.41 nM, respectively. Similarly, ambrisentan (ET_A-selective antagonist) and CI-1020 (ET_A-selective antagonist) inhibited competitively the bladder [125 I]ET-1 binding (Fig. 1), with IC₅₀ values of 5.10 and 8.70 nM, respectively.

Interpretation of result

[¹²⁵l]ET-1 labels selectively ET-1 receptors in rat tissues such as the bladder. Selective antagonists of ET-1 receptors at pharmacological doses may bind to these ET-1 receptors, thereby suggesting some effects on the physiological functions of bladder.

Concluding message

It is concluded that there exists a significant amount of pharmacologically relevant ET-1 receptors in the rat bladder. Selective antagonists of ET-1 receptors may cause pharmacological effects on the bladder functions. To our knowledge, this study provides the first evidence for the direct identification of pharmacologically relevant ET-1 receptors in the bladder.

Table 1. K_d and B_{max} for specific |¹²⁵||ET-1 binding in the bladder, cerebral cortex, lung, heart, and kidney of rats.

Dillax for opcomo [1 <u>1</u> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	tilo bladaoi, col	obtai cortox, lang, mait, and
Tissues	K _d (pM)		B _{max} (fmol/mg protein)
Bladder		± 32	272 ± 36
Cerebral cortex	78.4	± 7.8	172 ± 8
Lung	1607	± 936	3988 ± 1851
Heart	98.4	± 14.8	132 ± 9
Kidney	814	± 236	256 ± 50

Each value represents the mean ± SEM for three to four experiments.

Fig. 1. Competitive inhibition by bosentan, ambrisentan, CI-1020 and ET-1 of specific [125 I]ET-1 binding in the bladder of rats. Each value represents the mean \pm SEM for two to three experiments.

References

- 1. BJU Int 84: 714-719, 1999
- 2. J Urol 148: 1290-1298, 1992
- 3. Eur J Pharmacol 580: 394-400, 2008

Disclosures

Funding: None Clinical Trial: No Subjects: ANIMAL Species: Rat Ethics Committee: the guidelines for the care and use of laboratory animals of the University of Shizuoka.