155

Takahashi R¹, Funahashi Y², Naito S¹, Yoshimura N³

1. Department of Urology, Kyushu University, **2.** Department of Urology, Nagoya University, **3.** Department of Urology, University of Pittsburgh

FUNCTIONAL MECHANISMS INDUCING HYPEREXCITABILITY OF BLADDER AFFERENT NEURONS THROUGH PROSTATE-TO-BLADDER AFFERENT CROSS-SENSITIZATION IN RATS WITH NON-BACTERIAL PROSTATITIS

Hypothesis / aims of study

Patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) often exhibit irritative bladder symptoms despite no evidence of bladder inflammation. We previously reported that prostatic inflammation induces bladder overactivity through pelvic organ cross-sensitization in rats (2012 AUA). However, the underlying functional mechanisms are not fully elucidated. We therefore examined changes in electrophysiological properties of dichotomized (bladder and prostate) afferent neurons (D-AN) and bladder afferent neurons (B-AN) obtained from prostatitis rats.

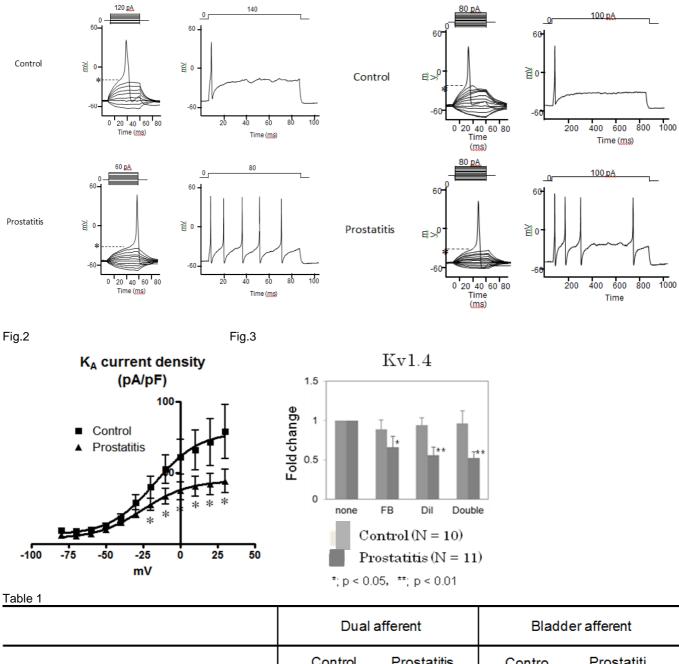
Study design, materials and methods

Prostatic inflammation was induced by 5% formalin injection into the prostate of male SD rats. After 1 week, L6-S1 dorsal root ganglia (DRG) were removed and whole cell patch-clamp recordings were performed on dissociated D-AN and B-AN, which were labelled by retrograde axonal transport of fluorescent dyes, Fast Blue (FB) or Dil, injected into the bladder wall or the prostate, respectively. Since the majority of bladder C-fibres are sensitive to capsaicin, FB and/or Dil-labelled cells that exhibited inward currents in response to capsaicin application were selected for evaluation. The mRNA level of an A-type K⁺ channel (K_A) subunit, Kv1.4 in D-AN and B-AN was evaluated by real-time RT-PCR using laser-capture microdissection methods.

<u>Results</u>

In the current clamp condition, capsaicin-sensitive D-AN or B-AN from prostatitis rats exhibited lower thresholds for spike activation (-28.3 \pm 1.4mV or -28.7 \pm 1.4mV) compared to control rats (-19.5 \pm 1.1mV or -21.3 \pm 2.2mV, respectively) (Fig.1, Table1). The number of action potentials of D-AN or B-AN during a 800 msec depolarizing pulse was significantly increased after prostatitis (5.1 \pm 0.7 or 3.5 \pm 0.4 spikes) compared to control rats (1.2 \pm 0.1 or 1.4 \pm 0.3 spikes, respectively) (Fig.1, Table1). In the voltage clamp condition, the peak densities of K_A currents during membrane depolarization to 0 mV were lower in neurons from prostatitis rats than in those from control rats (Fig. 2). Significant differences in current density were detected at depolarizing pulses greater than -20 mV. However, the peak current density of sustained delayed rectifier-type K⁺ (K_{DR}) currents in capsaicin-sensitive bladder afferent neurons was not different between control and prostatitis rats. In prostatitis rats, the mRNA level of Kv1.4 α -subunit, which can form K_A channels, was significantly decreased in D-AN and B-AN compared to non-labeled neurons (Fig.3).

Interpretation of results


These results indicate that: (1) capsaicin-sensitive D-AN and B-AN from prostatitis rats exhibited increased cell excitability evidenced by lower thresholds for spike activation and tonic firing pattern, (2) the peak density of K_A currents in capsaicin-sensitive B-AN of prostatitis rats was significantly smaller than that from control rats and (3) prostatic inflammation induced downregulation of Kv1.4 α -subunit expression in prostate afferent neurons and D-AN innervating both organs as well as B-AN that do not innervate the prostate. Thus, it is assumed that bladder overactivity and electrophysiological changes in D-AN and B-AN after prostatic inflammation is induced at least in part by afferent cross-sensitization from the prostate to the bladder through activation of dichotomized afferent pathways that innervate both prostate and bladder.

Concluding message

The present study indicates that excitability of capsaicin-sensitive C-fiber D-AN and B-AN is increased due to reduced K_A channel activity associated with decreased expression of Kv1.4 α -subunit following prostatic inflammation. Thus, prostate-tobladder afferent cross-sensitization through dichotomized afferents following prostatic inflammation is a potential mechanism inducing irritative bladder symptoms in CP/CPPS

Fig.1 Dichotomized afferent

Bladder Afferent

	Control	Prostatitis	Contro	Prostatiti
No. of cells	8	7	8	10
Diameter (μm)	28.4 ± 0.8	30.4 ± 1.0	27.7 ± 1.1	28.9 ± 0.6
Input capacitance (pF)	27.0 ± 1.5	37.5±3.2 *	30.8 ± 2.6	33.3 ± 2.4
Membrane potentials (mV)				
Restin	-50.3 ± 1.2	-47.2 ± 1.4	-50.8 ± 0.9	-48.6 ± 0.8
Spike threshold	-19.5 ± 1.1	-28.3 ± 1.4 **	-21.6 ± 2.4	-28.7 ± 1.4 *
Pea	36.3 ± 2.2	46.3 ± 2.6 *	38.2 ± 3.7	39.4 ± 2.6
Spike duration (ms)	6.4 ± 0.9	3.6±0.4 *	5.6 ± 0.7	4.4 ± 0.4
No. of action potentials, 800-ms depo	1.2 ± 0.1	5.1 ± 0.7 **	1.5 ± 0.3	3.5±0.4 **
Data are means ± <u>s.e.m</u> ** P < <u>0.01 vs. control</u> * P < <u>0.05 vs. control</u>				

Disclosures

Funding: NIH DK088836 and P20-DK090919, DOD W81XWH-12-1-0565 Clinical Trial: No Subjects: ANIMAL Species: Rat Ethics Committee: Institutional Animal Care and Use Committee (IACUC) at the University of Pittsburgh