367

Fernandes V S¹, Ribeiro A S F¹, Martínez M P¹, Blaha I², Serrano-Margüello D¹, Martínez-Sáenz A³, Bustamante S³, Vázquez-Alba D³, Carballido J³, García-Sacristán A¹, Prieto D¹, Hernández M¹

1. Universidad Complutense de Madrid, 2. Servicio de Urología. Hospital General Universitario Gregorio Marañón, Madrid, 3. Servicio de Urología. Hospital Universitario Puerta de Hierro-Majadahonda, Madrid

ROLE OF HYDROGEN SULFIDE IN THE INHIBITORY NEUROTRANSMISSION TO THE PIG INTRAVESICAL URETER.

Hypothesis / aims of study

Hydrogen sulfide (H_2S) is considered as the third endogenous gaseous transmitter besides nitric oxide (NO) and carbon monoxide (CO) [1]. H_2S is synthesized from L-cysteine by the action of two pyridoxal-5´-phosphate-dependent enzymes, cystathionine γ -lyase (CSE) or cystathionine β -synthase (CBS) [1]. The autonomic nervous system plays an essential role in the maintenance of ureteral motor activity. Thus, together with the regulation exerted by noradrenergic and cholinergic systems, a nitric oxide (NO)-dependent, as well as an unknown nature neurogenic component in non-adrenergic, non-cholinergic (NANC) inhibitory transmission of the intravesical ureter has also previously been elucidated [2]. H_2S has been identified as a powerful inhibitory gaseous signaling molecule in the bladder outflow region [3], however, no data exists about of its possible role in the regulation of ureteral smooth muscle contractility. Therefore, the aim of the current study was to investigate the involvement of H_2S in the inhibitory neurotransmission to the pig intravesical ureter.

Study design, materials and methods

For immunohistochemical studies, intravesical ureter segments were fixed in 4 % paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 (PB), for 2 to 4 h at 4° C, and subsequently placed in 30 % sucrose in 0.1M PB for cryoprotection and stored at - 80°C. Transversal sections 5 μ m thick were obtained by means of a cryostat and preincubated in 10 % normal goat serum in PB containing 0.3 % Triton-X-100, for 2-3 h. Then, sections were incubated with rabbit anti-cystathionine γ -lyase (anti-CSE) antibody at 4-8 μ g/ml final concentration plus a mouse anti-protein gene product 9.5 (anti-PGP 9.5), as neuronal marker, diluted 1:50 during 48 h at 4° C, washed and reacted with the second antibodies Alexa Fluor 594 goat-antirabbit (1:200 dilution) to detect CSE and Alexa Fluor 488 goat-antimouse (1:200 dilution) to detect PGP 9.5 for 2 h at room temperature.

Concerning to functional studies, ureteral strips 4-6 mm long and 2-3 mm wide were suspended horizontally with one end connected to an isometric force transducer (Grass FT 03C) and the other one to a micrometer screw, in 5 ml organ baths containing physiological saline solution (PSS) at 37° C gassed with carbogen (95 % O₂ and 5 % CO₂) to obtain a final pH of 7.4. The signal was continuously recorded on a polygraph (Graphtec Multicorder MC 6621). Passive tension of 2 g was applied to the preparations and they were allowed to equilibrate for 60 min. On 0.1 μ M U46619-induced tone, under NANC conditions, frequency- and/or concentration-response relaxation curves to electrical field stimulation (EFS, 1 ms duration, 0.5-16 Hz, 20 s trains, with constant current output adjusted to 75 mA) and to the H₂S donor *P*-(4-methoxyphenyl)-*P*-4-morpholinylphosphinodithioic acid (GYY4137), respectively, were obtained in the absence or presence of CSE and NO synthase inhibitors.

<u>Results</u>

CSE expression was observed as nerve fibers distributed in the intravesical ureter smooth muscle layer. On U46619precontracted ureteral strips, under NANC conditions, EFS (0.5-16 Hz) and the H₂S donor *P*-(4-methoxyphenyl)-*P*-4morpholinylphosphinodithioic acid (GYY4137, 0.1 nM-30 μ M) evoked frequency- and concentration-dependent relaxations. EFS-elicited responses were reduced by inhibition of CSE and abolished by blockade of CSE and NO synthase.

Interpretation of results

The present results suggest that neuronal H_2S , synthesized by CSE, is involved in the NO-independent inhibitory transmission to the pig intravesical ureter.

Concluding message

Relaxation to H₂S donors may be useful in the therapeutic management of obstructive uropathy produced by ureteric calculi.

References

- 1. Wang, FASEB J 16: 1792-1798, 2002.
- 2. Hernández et al, Neurosci Lett 186: 33-36, 1995.
- 3. Fernandes et al, J Urol (In press, doi: 10.1016/j.juro.2012.10.006).

Disclosures

Funding: This work was supported by grant no. PS09/00044 from the Ministerio de Ciencia e Innovación, Spain. Vítor S. Fernandes is a research fellow (SFRH/BD/68460/2010) of Fundação para a Ciência e Tecnologia, Ministério da Educação e Ciência, Portugal. **Clinical Trial:** No **Subjects:** ANIMAL **Species:** Pig **Ethics not Req'd:** No ethical approval was needed.