76

Sumino Y¹, Mori K¹, Shinohara M¹, Akita Y¹, Sato F¹, Mimata H¹ *1. Department of Urology, Oita University, Faculty of Medicine*

IS HUMAN FEMALE URETHRAL RHABDOSPHINCTER COMPOSED OF SLOW-TWITCH MUSCLE FIBERS ONLY?

Hypothesis / aims of study

We previously clarified that approximately 70% of slow-twitch (Type 1) muscle fibers existed in human male rhabdosphincter (RS) (1). However, striated muscle fiber type of human female RS has been generally considered a single population of slow-twitch (2). In this study, we also investigated the composition of striated muscle fibers even in human female RS to clarify the contractile properties of that.

Study design, materials and methods

Muscle specimens of RS were obtained from 6 female patients who underwent radical cystectomy, and were frozen in liquid nitrogen. 10µm-thick frozen sections were stained with myofibrillar ATPase at pH 10.6 and evaluated for quantitative parameters and fiber type distribution.

Results

Of all 6 cases, 4 provided specimens that had striated muscle fibers and could be divided into the two major fiber types, Type 1 (slow-twitch) and Type 2 (fast-twitch). Type 1 muscle fibers were predominant in RS (83.2 ± 5.0 %), and mean size of the muscle fibers tended to be smaller in Type1 (mean area; $877\pm223 \ \mu\text{m}^2$) than in Type2 (mean area; $1365\pm369 \ \mu\text{m}^2$).

(Figure)

Photomicrograph of serial cryostat sections of RS, stained for hematoxylin-eosin and myofibrillar ATPase with preincubation at pH 10.6.(x 200)

Interpretation of results

Likewise human male, it has been considered that RS mainly contributed to urinary continence mechanism by slow contraction. Moreover, the smaller mean size of Type 1 muscle fibers suggests more fatigue resistance compared with Type 2 muscle fibers in RS because small fibers have a shorter diffusion distance for metabolic substrates.

Concluding message

Human female RS contribute to urinary continence mechanism by mostly slow contraction likewise human male. On the other hand, we confirmed a small population of fast-twitch muscle fibers even in human female RS. These results might help a more detailed understanding of human female urethral function.

References

- 1. Sumino Y. et al. Striated muscle fiber compositions of human male urethral rhabdosphincter and levator ani. J Urol. 2006. 175:1417.
- Gosling JA. et al. A comparative study of the human external sphincter and periurethral levator ani muscles. Br J Urol. 2006. 53: 35.

Disclosures

Funding: None Clinical Trial: No Subjects: HUMAN Ethics Committee: Oita University Institutional Review Board Helsinki: Yes Informed Consent: Yes