Developing a chronic in-vitro model for bladder pain syndrome

Objective
Sustain a chronic deficient urothelial barrier in-vitro

Boy B. Rozenberg, John P.F.A. Heesakkers, Dick A.W. Janssen, Jack A. Schalken
Dept of Urology 659, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre,
P.O Box 9101, 6500 HB Nijmegen, The Netherlands.

Introduction
• In bladder pain syndrome (BPS), the urothelial barrier is compromised
• This enables solutes from the urine to leak into the bladder wall and cause irritative symptoms
• Many animal models for BPS use irritants to damage the urothelium
• We set out to prepare a chronic in-vitro model for a deficient urothelial barrier

Methods
• Primary porcine urothelial cells were cultured on Transwell inserts:
 - Different instillation protocols were evaluated, with n=4 in each group:
 • Negative control
 • Protamin 10% daily 8 hour instillation
 • Lipopolysacharide (LPS) 2% continuous instillation
 - The urothelial barrier was measured daily at 7.00 AM and 3.00 PM through TransEpithelial Electrical Resistance (TEER)

Results
• The graph below shows the percentual change in TEER after exposure to protamin and LPS
 - Microscopic evaluation cells
 In the protamin group
 • Apparent debris from dead cells
 • Different shaped cells, less flattened

Conclusion
• The urothelial resistance does not decrease in the negative control group
• The addition of LPS did not result in a decreased urothelial resistance (comparable to negative control)
• It is hypothesized that additional immunologic components are necessary for any response from LPS
• With protamin, the urothelial resistance shows a daily decrease while the cells stay viable and maintain some degree of barrier function

Conclusion
Protamin is suited for a chronic deficient barrier in-vitro

Contact information:
Boy.Rozenberg@radboudumc.nl