Holzhauer C¹, Kums A¹, Weijerman P¹, van Balken M¹

1. Department of urology, Rijnstate Hospital, Arnhem, The Netherlands

IS THE LASER MIGHTIER THAN THE SWORD? A COMPARATIVE STUDY FOR THE URETHROTOMY

Hypothesis / aims of study

The knife is the most common used instrument for a Sachse urethrotomy. Unfortunately there are high rates of relapse. It is thought that using a laser reduces these relapse rates. In this study we compare both techniques.

Study design, materials and methods

We examined 192 patients (all male) in this retrospective study. Between 2010 and 2014, 127 (66,1%) patients were treated with a knife and 65 (33,9%) with a laser (Holmium, Laservision). We used the UREThRAL stricture score (USS)¹ (Table I) for scoring the complexity of the stricture. Postoperative complications were scored using Clavien. Treatment success was stated as no need for intervention. Every intervention was considered a failure, like a relapse requiring new surgery but also starting Clean Intermittent Catherization (CIC) after surgery.

Results

Mean age in the knife group (KG) was 63 years (95%CI: 60-66), in the laser group (LG) this was 62 years (95%CI: 57-66) (p=0,68). The USS did not differ between both groups (LG 6,0 (95%CI: 5,3-6,7), KG 5,7 (95%CI: 5,4-6,0) (p=0,49). It should be pointed that laser was more often used for patients with a relapse (LG 46,7% (N=28), KG 53,3% (N=32) (p=0,01). All results can be found in Table II

Between both groups no difference was found in postoperative increase in flow-rate, the percentage postoperative complications (all Clavien II, 1 Clavien III in the KG) or the percentage of failure. Even when looked separately at patients treated for a primary stricture versus those treated for a relapse, no difference could be found between the KG and the LG: nor in USS, neither in outcomes.

Interpretation of results

There was no significant outcome difference between urethrotomy with laser or with knife regarding increase of the flow-rate, number of complications or failure rate. There was no difference in duration of follow-up or complexity of the strictures. Despite the fact that laser was more often used in patients with a relapse, outcomes were not different when corrected for this item..

Concluding message

As treatment with laser is more expensive that treatment with a knife, costs have to be taken in consideration in deciding which technique to use in the transurethral treatment of urethral strictures.

Table I the UREThRAL Stricture Score

Table Fille Offermore officiale ocole						
Component	Score					
Urethral stricture etiology	1 = traumatic, idiopathic or iatrogenic					
	2 = inflammatory or hypospadias					
Total number of strictures	2 = point per stricture					
Retention	1 = patent urethra					
	2 = obliterated or near obliterated					
Anatomic location	1 = bulbar urethra					
	2 = penile urethra (including meatus and fossa)					
	3 = panurethral or both bulbar and penile urethra are involved					
Length	1 point per cm of length					

Table II Results

	Total group			Primary			Relapse		
	KG (N=127)	LG (N=65)	р	KG (N=95)	LG (N=37)	p	KG (N= 32)	LG (N=28)	р
USS (95%CI) (min:5)	5,7 (5,4- 6,0)	6,0 (5,3- 6,7)	0,49	5,7 (5,4- 6,0)	5,7 (5,1- 6,2)	0,92	5,7 (5,1- 6,4)	6,6 (4,5- 8,7)	0,39
Increase Qmax in ml/sec (95%CI)	- / - (- / -	10,5 (6,7- 14,4)	0,73	10,9 (6,3- 15,4)	8,6 (4,5- 12,8)	0,5	6,0 (-5,0- 19,9)	13,4 (5,4- 21,4)	0,32
Complications in % (N)	5,6 (7)	3,1 (2)	0,36	4,2 (4)	2,7 (1)	0,57	9,7 (3)	3,6 (1)	0,35
FU in months (95%CI)	16,4 (13,6- 19,3)	17,5 (13,9- 21,0)	0,66	15,9 (11,5- 17,9)	14,4 (12,4- 21,9)	0,39	16,7 (15,6- 27,6)	14,2 (12,4- 23,4)	0,36
Failure % (N)	58,3 (70)	68,8 (44)	0,11	45,6 (41)	56,8 (21)	0,17	96,7 (29)	91,2 (52)	0,15

References

The UREThRAL stricture score: A novel method for describing anterior urethral strictures; Wiegand et all; Can Urol Assoc J 2012;6(4) 260-4

Disclosures

Funding: None Clinical Trial: No Subjects: HUMAN Ethics not Req'd: It is a retrosepctive study in which used data already gatered in the electronic patient files Helsinki: Yes Informed Consent: No