WHAT IS THE EFFECT OF POSTERIOR TIBIAL ELECTRICAL STIMULATION ON PELVIC FLOOR ACTIVITY? – A CROSS OVER STUDY

Hypothesis / aims of study
The posterior tibial nerve is a mixed sensory-motor nerve, containing axons passing through the L4–S3 spinal roots. The sacral roots also contain the peripheral nerves involved in the sensory and motor control of the bladder and pelvic floor, and are the same spinal tracts targeted by sacral neuromodulation. Electrical stimulation of these nerves inhibits bladder activity by stimulating large diameter somatic afferent fibers, which in turn evokes a central inhibition of the micturition reflex pathway in the spinal cord or the brain. Although it is likely that stimulation of the sacral roots, (SNS), stimulation of the pudendal nerve, and stimulation of the tibial nerve (PTNS) all affect central components of the neural circuits controlling the bladder, there may be significant differences. Nowadays, we know that electrical pudendal nerve stimulation (EPNS) can contract the pelvic floor muscle. But we don't have any studies with PTNS. Therefore the aim of this study was to evaluate whether there are differences in pelvic floor strength and electromyography activity after 8 sessions of posterior tibial nerve stimulation (PTNS) in elderly women.

Study design, materials and methods
This is a randomized, cross-over study. Women admitted with they were between 60 and 80 years old. Elderly women with overactive bladder syndrome were randomized in two groups (ESG – electrical stimulation group and CG – control group). ESG elderly women with overactive bladder syndrome were prospectively treated with PTNS weekly for a total of 8 sessions. CG didn’t receive any type of treatment in period I. OAB symptoms were the main clinical presentation reported by all women. OAB symptoms were assessed using a 3-day voiding diary and ICIQ-OAB (International Consultation on Incontinence Questionnaire Overactive Bladder). OAB symptoms were the main clinical presentation reported by all women. Patients who did not consent or were unable to complete the weekly treatment sessions, and women that used drugs to treat overactive bladder in the last six months, women who presented some neurological disease, with heart pacemaker, with lower urinary tract infection, were excluded. We chose to use the protocol described previously [1]: two self-adhesive electrodes, positioned with gel, one immediately behind the medial malleolus and another 10cm above. It begins with a frequency of 1Hz and seeks to correctly identify the posterior tibial nerve. This position is confirmed with the rhythmic movement of flexion of the fingers. The frequency is then changed to 10Hz, pulse width fixed at 200μs and intensity adjusted according to each patient's threshold. Assessment was performed before and after treatment by the same examiner, in which he did not know whether the patient had received treatment or not. The PFM were assessed in supine position with hips and knees flexed by digital palpation. To quantify muscle strength, a score from 0–5 was given based on the previously validated Oxford Scale. The electrical activity was measured by surface electromyography (sEMG), which was conducted in the private laboratory area. The electrode pairs were positioned along the line of perineal body. With the electrodes in situ, three maximum voluntary and successive contractions were required from the pelvic floor. Each contraction was recorded in microvolt (μV). The parameter used was the square root of the mean of three contractions. All evaluations were carried out in 2-min intervals. For the statistical analysis, SPSS (Statistical Package for Social Sciences) version 20.0 was used. To determine normality of the data and to analyze the differences between pre and post treatment, Komogorov-Smirnov and test Student's was used, respectively, as appropriate. A P-value of <0.05 was considered statistically significant.
Results
From November 2013 to August 2014, 31 possible eligible patients were recruited and 7 were excluded. In total, 24 women with an average age of 67.83 years (± 5.91) were evaluated. The mean of BMI was 28.01 (± 4.29) and parity was 5.29 (± 3.11). No statistically significant differences were observed when analyzing an electrical stimulation group and control group, regarding pelvic floor muscle activity when we compared pre (p=0.72) and post (p=0.9) (Figure 1).

Interpretation of results
PTNS is believed to relieve symptoms due to an overactive and underactive bladder. The underlying neurophysiologic mechanisms have not yet been elucidated. To our knowledge, there are no studies demonstrating that tibial posterior stimulation has any influence on PFM function. Conversely, there is a study that demonstrate that EPNS can contract the PFM and simulate PFMT [1]. Or influence anal pressure [2]. But ours data shows that PTNS may not influence pelvic floor muscules.

Concluding message
Posterior tibial nerve stimulation does not improve function and PFM electromyography activity.

References

Disclosures
Funding: no funding Clinical Trial: Yes Registration Number: Registro brasileiro de ensaio clinicos RBR-39dz5v RCT: Yes Subjects: HUMAN Ethics Committee: Ethics Committee of the College of Health Sciences of the University of Brasilia protocol number 410.161 Helsinki: Yes Informed Consent: Yes