#154 TRPV4 receptor activation in the bladder improves voiding dysfunction in a rat model of detrusor underactivity induced by pelvic nerve crush injury

Ei-ichiro Takaoka, Takahisa Suzuki, Nobutaka Shimizu, Joonbeom Kwon, Hiroki Okada, Christopher J. Chermansky, and Naoki Yoshimura Department of Urology, University of Pittsburgh School of Medicine

Background:

Incomplete bladder emptying due to detrusor underactivity (DU) is a significant problem underlying underactive bladder (UAB). Also, TRPV4 has been reported to be one of the mechanosensitive channels expressed in the bladder. In this study, we sought to produce a consistent rat model of UAB with pelvic nerve crush (PNC) and evaluated the therapeutic effect of intravesical application of a TRPV4 agonist (GSK 1016790A) on the UAB condition.

Results:

- 1. Morphology: Bladder weight was significantly increased in PNC rats (Normal=0.078±0.012, PNC=0.22±0.012, p<0.0001).
- 2. Awake CMG (Fig.1): PNC rats showed significant increases in voided volume, post-void residual urine volume, and residual urine rate compared to control rats. PNC rats also revealed the significant increases in inter contraction intervals (ICI), a number of non-voiding contractions, and threshold pressure while the amplitude of bladder contraction during voiding was significantly decreased.
- 3. Intravesical TRPV4 administration to normal rats (Fig.2): Intravesical **1.5µM** of GSK 1016790A application did not significantly affect any CMG parameters.
- 4. Intravesical TRPV4 administration to PNC rats (Fig.3): Intravesical **1.5µM** of GSK 1016790A significantly decreased ICI, voided volume, and post-void residual urine volume in PNC rats.
- mRNA expression of TRPV4 in the bladder mucosa was significantly increased in PNC rats compared to the normal rats (p=0.0013)(Fig.4).
 PNC rats exhibited **impaired urethral relaxation** during isovolumetric (ISO) bladder contraction (Fig.5).

Figure 3. Intravesical GSK1016790A (1.5µM) administration to PNC rats

10min											
		ICI (s)	Amplitude (cmH2O)	PB (cmH2O)	PT (cmH2O)	NVC rate (NVC/min)	∨∨ (µl)	RU (µl)	RU rate (%)	Capacity (µl)	Compliance (ml/cmH2O
	Normal (n=24)	370 ± 17	37 ± 2.6	3.9 ± 0.27	9.3 ± 0.5	0.063 ± 0.019	522 ± 28	4.5 ± 2.4	0.89 ± 0.51	530 ± 28	0.12 ± 0.013
	PNC (n=24)	910 ±61	28 ± 1.3	4.3 ±0.4	15 ± 1.0	0.96 ± 0.15	995 ± 57	810 ± 170	40 ± 5.6	1799 ± 192	0.13 ±0.010
			0.0057	0.05							0.50

Bladder

capacity (µl)

1900

±300

1000

 ± 190

0.012

RU

rate (%)

36

±10

35

±13

0.81

Figure 5. Isovolumetric Cystometry & Continuous Urethral Pressure Measurement

0.15

0.18

0.12

0.014 0.042

p*

0.0016

0.19

Figure 2. Intravesical GSK1016790A administration to Normal rats

Saline	60	Saline	
	40 20 -0		
GSK 1.5µM		GSK 3µM	
	60 40 20 -0		
10min	1		

	ICI	Amplitude	PB	PT	NVC rate	۷۷	RU	RU rate
	(s)	(cmH2O)	(cmH2O)	(cmH2O)	(NVC/min)	(µl)	(μl)	(%)
0.1% DMSO	393	33	3.5	8.6	0.15	566	9.2	1.2
(n=6)	±34	±3.6	±0.94	±0.93	±0.050	±44	±5.8	±0.8
saline	366	33	3.2	8.5	0.10	572	10	1.4
	±16	±3.7	±0.60	±0.96	±0.066	士50	±6.3	±1.0
p*	0.33	0.81	0.61	0.9	0.49	0.84	0.17	0.38
GSK 0.3μM	423	35	5.2	10	0.27	552	0.42	0.063
(n=6)	±40	±2.8	±0.39	±0.82	±0.16	±68	±0.42	±0.063
saline	424	32	4.4	8.5	0.054	599	5.0	0.60
	±15	±1.8	±0.30	±0.23	±0.021	±40	±5.0	±0.60
p*	0.38	0.1	0.3	0.55	0.23	0.87	0.36	0.36
GSK 1.5µM	356	33	7.1	12	0.12	488	4.6	0.91
(n=6)	±40	±3.7	±1.8	±3.1	±0.054	±50	±4.6	±0.91
saline	398	32	4.1	8.5	0.029	550	5.0	0.87
	土35	±2.3	±0.42	±0.68	±0.015	±50	±5.0	±0.87
P*	0.085	0.5	0.13	0.23	0.16	0.087	0.36	0.36
GSK 3µM (n=6)	261	35	6.2	11	0.300	343	6.2	2.2
	±43	±4.0	±1.5	±1.9	±0.089	土57	±6.2	±2.2
saline	393	32	3.7	7.9	0.038	536	12	2.7
	土39	±2.8	±0.67	±0.54	±0.021	土60	±7.6	±1.9
P*	0.018	0.19	0.076	0.13	0.044	0.011	0.31	0.66

Conclusions:

- 1. Rats with pelvic nerve injury induced by a PNC method, which showed the characteristics of DU, seem to be an
- appropriate model for evaluation of peripheral neurogenic mechanisms of UAB. 2. TRPV4 that reduced the bladder capacity and residual urine volume in PNC rats could be a potential target for the
- IKPV4 that reduced the bla treatment of UAB.

3. PNC rats had impaired urethral relaxation. The therapy to enhance urethral relaxation may be effective for UAB treatment.