Aim of study

- Limits for research on bladder diseases partly come from the lack of in vitro and in vivo models mimicking human pathophysiology.
- To overcome this problem, a new model is required that will improve preclinical target identification, pharmacological lead validation, and compound optimization.
- For this purpose, we started the development of the first three-dimensional (3D) urothelial organoid model.

Materials and methods

- Dissection was performed from macroscopically healthy area of bladder from patients treated by cystectomy.
- Urothelium was removed as a sheet and dissociated by enzymatic digestion.
- Urothelial cells were seeded in Matrigel®.
- Culture growth medium used was KSFM® (Keratinocyte serum free medium) complemented with human epithelial growth factor and bovine pituitary extract.
- Morphological monitoring of the structures was performed by confocal microscopy twice per week.
- Architecture and cell differentiation of organoids were assessed by immunofluorescence staining of the nucleus, actin, laminin β1 (LB1), cytokeratins (CK) 17 and 20, uroplakin 3A (UPK3A) and alpha-occludin.
- Urothelial cell differentiation was observed in a few number of organoids (figure 2).
 - Basal cells expressing the CK17 antigen were detected on the outer border of organoids surrounded by a basal membrane expressing LB1 antigen.
 - Superficial cells expressing the CK20 antigen were located in the center of the organoids.
 - The staining of the barrier function protein UPK3A and alpha-occludin was not conclusive.

Results

- Thirteen bladder organoid cultures were realized.
- A continuous growth of the structures was observed until 3 weeks of culture.
- 3D structures evolved leading to four different phenotypes of organoids (figure 1).

Figure 1: human bladder organoids phenotypes

A) Cytotic monostratified organoid
B) Cytotic plastratified organoid
C) “Budding” organoid with little central lumen
D) “Budding” organoid without lumen

Figure 2: Differentiated human urinary bladder organoids

- Bladder organoids in brightfield (a and c) and immunostained (b and d). Nucleus in DAPI. Actin in blue, superficial differentiate CK20 positive urothelial cells in green, and basal CK17 positive urothelial cells in red.
- Scale bar 50 micrometer.

Conclusion

- Human urothelial organoids partly mimic the architecture and cellular differentiation within urothelium.
- Optimization is necessary to obtain complete terminal differentiated organoids expressing barrier function proteins.
- Such a new model will be useful for studying pathophysiology and find new treatments for inflammatory bladder diseases as painful bladder syndrome.