

Role of the serotonergic system in urethral continence reflexes during sneezing in rats

Suzuki T¹, Shimizu T², Kwon J², Wada N², Takai S², Shimizu N², Takaoka E², Miyake H³, Ozono S³, Yoshimura N² 1. University of Pittsburgh, Hamamatsu University School of Medicine, 2. University of Pittsburgh, 3. Hamamatsu University School of Medicine

Introduction and Objective:

The spinal serotonergic pathways are reportedly involved in the control of urethral continence reflexes that prevent stress urinary incontinence (SUI). Previous studies described that serotonin (5-HT) receptor subtypes, $5-HT_{1A}$ and $5-HT_{2C}$, respectively reduce and enhance the urethral continence reflex during sneezing in rats [1]. However, because there are other multiple excitatory and inhibitory 5-HT receptors, the overall effects of the 5-HT system on the urethral function remain to be elucidated. Therefore, in this study, we examined the effects of 5-HT depletion induced by *p*-chlorophenylalanine (PCPA) that inhibits 5-HT synthesis and $5-HT_{2C}$ or $5-HT_7$ subtype agonists on urethral baseline activity and reflex contractions during sneezing in rats.

Materials and Methods:

We investigated the effects of intraperitoneal application of PCPA (200 mg/kg/day), and intravenous application of a $5-HT_{2C}$ agonist (CP-809101) or a $5-HT_7$ agonist (LP44) on neurally evoked urethral continence reflexes during sneezing (Figs. 1 and 2). Female Sprague-Dawley rats (12 weeks old) were divided into two groups; either Normal group (n = 6) or PCPA-treatment group without (n = 5) or with 5-HT drug administration (n=21). The PCPA-treatment + drug administration group received intravenous injection of; (1) a $5-HT_{2C}$ agonist without (n = 4) or with a $5-HT_{2C}$ antagonist (n = 4) or (2) a $5-HT_7$ agonist without (n = 7) or with a $5-HT_7$ antagonist (n = 6). In the PCPA-treatment + $5-HT_7$ agonist group, a $5-HT_{1A}$ antagonist (WAY-100635) was also administered before LP44 administration to suppress the partial $5-HT_{1A}$ agonistic effect of LP44. Using a microtransducer-tipped catheter inserted to the mid-urethra, we assessed amplitudes of urethral pressure responses during sneezing (A-URS) and urethral baseline pressure (UBP) under urethane anesthesia (Figs. 3 and 4). To evaluate the induced sneeze intensity, abdominal pressure during sneezing (Pabd) was also measured via an intraabdominal balloon catheter.

Results:

5-HT depletion by PCPA treatment significantly decreased A-URS from 71.8 to 36.7 cmH₂O (p < 0.01), and also UBP from 31.1 to 17.8 cmH₂O (p < 0.01) compared to normal rats (Figs. 3 and 5A). On the other hand, in PCPA-treated rats, CP-809101 alone or LP44 with WAY-100635 significantly increased A-URS from 42.1 to 66.2 cmH₂O (p < 0.01) or from 30.0 to 50.5 cmH₂O (p < 0.01) as well as UBP from 17.3 to 32.4 cmH₂O (p < 0.05) or from 15.2 to 26.6 cmH₂O (p < 0.01). respectively (Figs 3, 5B and 5C). The enhancing effects of 5-HT_{2C} or 5-HT₇ agonist on A-URS and UBP were antagonized by respective 5-HT receptor antagonist.

Discussion:

In the present study, 5-HT depletion by PCPA decreased A-URS and UBP, indicating that the overall 5-HT system plays a facilitatory role in the urethral continence function. Furthermore, both $5-HT_{2C}$ and $5-HT_7$ agonists increased A-URS and UBP, indicating that not only $5-HT_{2C}$, but also $5-HT_7$ receptor subtypes can enhance the urethral continence reflex. In addition, previous studies reported that intrathecal application of a $5-HT_{2C}$ agonist, mCPP, increased A-URS without affecting UBP in rats without 5-HT depletion [1], suggesting that endogenous 5-HT may influence the $5-HT_{2C}$ receptor-mediate effect on UBP. The site of the action of 5-HT is likely to involve the Onuf's nucleus of the lumbosacral spinal cord, where dense 5-HT-containing nerve terminals onto urethral rhabdosphincter motoneurons are identified [4].

Conclusion:

These results indicate that activation of 5-HT receptors such as $5-HT_{2C}$ and $5-HT_7$ enhances the active urethral closure reflex during sneezing. Activation of these excitatory 5-HT receptor subtypes could be effective for the treatment of SUI.

References: 1. Miyazato M, et al. Am J Physiol Renal Physiol 2009;297:F1024–1031. 2. Yoshimura M, et al. J Physiol Sci 2014;64:97–104. 3. Yoshimura N and Miyazato M. Int J Urol 2012;19:524-537. 4. Doly S, et al. J Comp Neurol 2005;490: 256–269.	Conflict of interest: None	ECS 2017 FLORENCE
	Source of funding: NIH R01DK107450	