A non-invasive method to identify directional geometric and strain patterns in women with overactive bladder using transabdominal ultrasound

Clark S1, Nagle A2, Bernardo R2, Carucci L1, Carroll A1, Klausner A3, Speich J3

Hypothesis / aims of study
Overactive bladder (OAB) occurs during the filling phase of the bladder. Changes in geometry as the bladder fills are expected to play an important role in the development of bladder wall tension. The purpose of this study was to measure dynamic changes in the bladder geometry over a complete urodynamic fill in OAB patients. The hypothesis was that the bladder would fill non-uniformly and that some individuals would have significantly different strain patterns. This would identify them as potentially having shape-mediated OAB.

Study design, materials and methods
• 14 women with high urgency OAB
• Extended urodynamic testing with infusion rate of 10% cystometric capacity per minute
• Transabdominal 3D ultrasound images were acquired every 60s
• Diameters measured in the latero-lateral (width, W), antero-posterior (depth, D), and cranio-caudal (height, H) orientations (Fig. 1)
• Engineering strain (change in length/initial length) was calculated using initial length as the length at 10% cystometric capacity

Results
• Depth was different than width and height (p = 0.012 and 0.006) at the beginning of the fill but was only different than width at 100% capacity (p = 0.002) (Fig. 2A).
• Engineering strain in the height direction was significantly greater than width (p = 0.006) and depth (p = 0.04) at 90% capacity (Fig. 2C).
• In the height direction, absolute diameter increased linearly in all individuals (Fig. 2B), and two individuals were noted as having strain in that direction lower than mean strain by ~2 STD (Fig. 2D).

Interpretation of results and concluding message
This study demonstrates a non-invasive method to measure changes in bladder geometry and strain throughout filling. The average OAB bladder changes shape significantly as the bladder is filled during urodynamic testing, particularly in the cranio-caudal direction. The two individuals who had decreased strain in the height direction (Fig. 2D) were not outliers in any other way (capacity, age, or BMI). The 3D ultrasound image of the individual with the smallest strain in the height direction is shown in Fig. 1B. The diameter strains of these two participants did not follow the typical pattern, which may identify them as having some form of a shape-mediated subtype of OAB.

Disclosures Statement
Support provided by NIH R01DK101719, VCU Presidential Research Quest Fund, and VCU Dean’s Undergraduate Research Initiative