

Predicting Whether Concomitant Anterior and/or Posterior Repairs Will Need to be Performed at Time of Uterosacral Ligament Suspension

Jonathan P. Shepherd, MD MSc¹; Mary F. Ackenbom, MD, MSc²; Lindsay C. Turner, MD MSc³; Oriel Nissim, MD¹; Jerry L. Lowder, MD MSc⁴

¹St. Francis Hospital and Medical Center, Hartford, CT ³Allegheny Health Network, Pittsburgh, PA

²University of Pittsburgh Medical Center, Pittsburgh, PA ⁴ Washington University in St Louis School of Medicine, St Louis, MO

Introduction:

- For 11% of women, pelvic organ prolapse will lead to surgery¹
- Bilateral uterosacral ligament suspension is an option for treatment of apical prolapse
- Anterior compartment defect (cystocele) or posterior compartment defect (rectocele) may or may not be repaired during uterosacral ligament suspension
 - Surgeons typically base their decision on resultant anatomy after USLS or routine

Objectives:

- •To determine what factors lead to a concomitant anterior and/or posterior repair being performed at time of uterosacral ligament suspension (USLS)
- •To identify preoperative predictive factors to help surgeons determine if A/P repair will be needed with USLS

Methods:

- This was a retrospective study using data from vaginal, laparoscopic, and robotic USLS performed from 1/2011 to 6/2015
- Patient demographics, surgical data, and perioperative complications were compared among those who did and did not undergo an anterior and/or posterior repair
- Odd Ratios (OR) and 95% confidence intervals (CI) of predictive factors were identified using a multivariable logistic regression model
- Linear regression was used to compare the impact of anterior/posterior repair on OR time
- POP-Q value cut-points were determined with an ROC curve analysis to identify when surgeons typically performed anterior and/or posterior repair

References:

1. Outcomes of transvaginal uterosacral ligament suspension: systematic review and meta-analysis. Margulies RU et al. Am J Obstet Gynecol. (2010)

Figure 1: ROC Curve demonstrates surgeons perform anterior repair when pre-op Aa≥+0.25

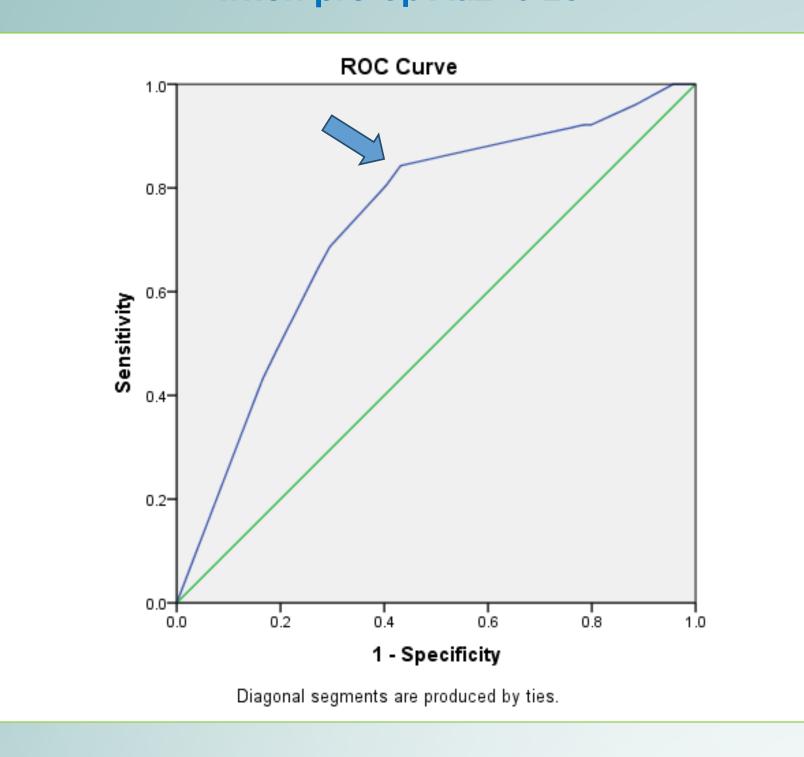


Figure 2: ROC Curve demonstrates surgeons perform posterior repair when pre-op Ap≥-1.75

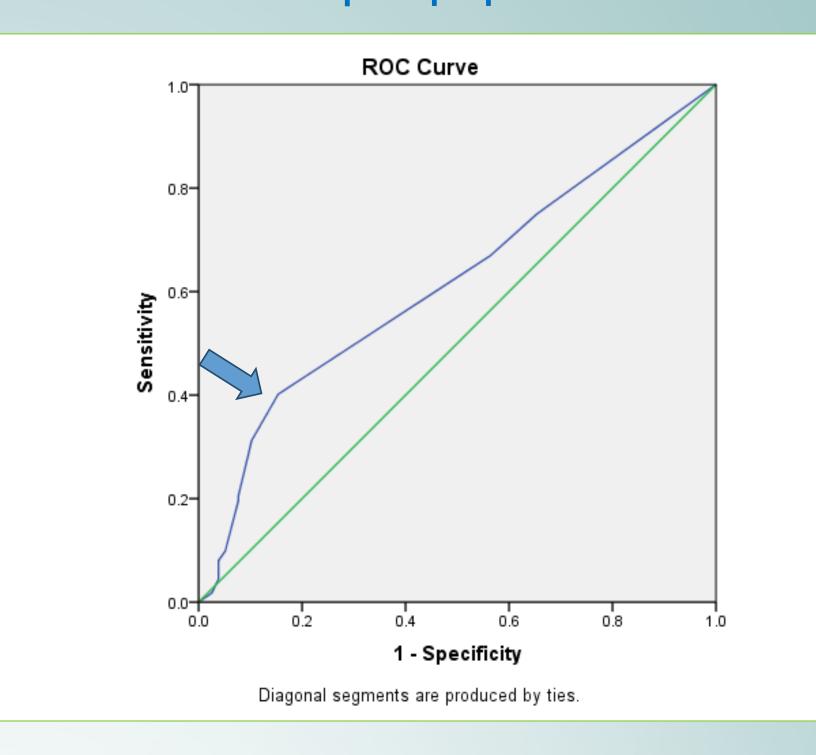


Figure 3: ROC Curve demonstrates surgeons perform anterior and/or posterior repair when pre-op C≥-4.25

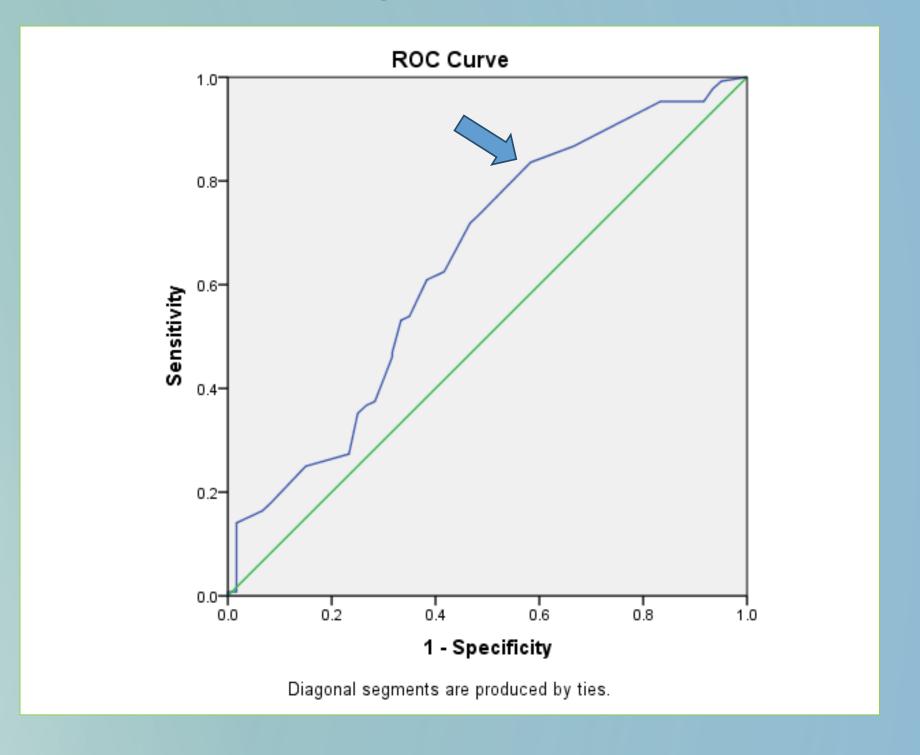


Table 1: Multivariable Logistic Regression for Additional Surgery Being Performed

Model Outcome	Variable	Adjusted Odds Ratio	95% Confidence Interval
Anterior Repair Only	Age (per year)	1.09	1.04-1.15
	Preoperative POP-Q Point Aa (per cm)	1.47	1.13-1.92
	Obese (BMI>30 kg/m ²)	2.83	1.20-6.68
	Vaginal Route	3.05	0.995-9.33
Posterior Repair Only	Preoperative POP-Q Point Ap (per cm)	1.60	1.19-2.16
	Preoperative Stress Urinary Incontinence	2.97	1.45-6.06
Anterior and/or Posterior Repair	Preoperative POP-Q Point C (per cm)	1.15	1.04-1.27

Table 2: Multivariable Linear Regression Model for Predictors of Operative Time

Predictor Variable	ß (minutes)	p-value
Constant Term	77.1	n/a
Conversion to Laparotomy from Vaginal or Laparoscopic Approach	69.4	0.006
Concomitant Hysterectomy	42.2	<0.001
Laparoscopic Approach (Compared to Vaginal)	21.0	0.004
Concomitant Midurethral Sling	19.6	0.030
Body Mass Index (kg/m²) (per every 1 unit increase)	2.3	<0.001
Any Prior Abdominopelvic Surgery	12.6	0.060

Results:

- •191 women underwent USLS
 - 57 (29.8%) vaginally, 134 laparoscopically (±robotic assistance)
- •7 surgeons performed a median 25 cases
- •Mean 61.2±11.7 years old with BMI 28.3±5.5 kg/m²
- •Mostly Caucasian (97.4%) with stage III prolapse (58.1%)
- •Operative time was 178.4±49.2 minutes
- •Concomitant procedures: Hysterectomy (90.1%), Salpingooophorectomy (28.3%), and Midurethral sling (17.3%)
- •Anterior Repair was performed in 27.2%, Posterior Repair in 58.6%, and one or both in 68.6%
- •Table 1 shows predictors of additional procedures being performed
- Table 2 shows predictors of OR time
 - Adding anterior and/or posterior repair either alone or in combination to the model did NOT significantly impact OR time
- •Figures 1-3 show best POP-Q cut-point values to predict where additional procedures were performed
 - Anterior Repair: Aa ≥ + 0.25 cm
 - Posterior Repair: Ap ≥ 1.75 cm
 - Anterior and/or Posterior Repair: C ≥ -4.25 cm

Conclusion:

- Preoperative factors predict the likelihood of performing additional anterior, posterior, or combined repairs during USLS
- Unfortunately, most predictors were intuitive POP-Q values
- POP-Q cut-points describe where surgeons are most likely to perform additional repairs and may aid in preoperative counseling
- OR time was not significantly impacted by the addition of anterior and/or posterior repairs with USLS