1006

Majima T¹, Yoshino Y¹, Yoshihisa M¹, Funahashi Y¹, Sassa N¹, Kato M¹, Gotoh M¹ *1. Nagoya University Graduate School of Medicine*

PREOPERATIVE URINARY STAINING CONTRIBUTES TO THE OCCURRENCE OF INGUINAL HERNIA AFTER ROBOT-ASSISTED RADICAL PROSTATECTOMY.

Hypothesis / aims of study

Previous studies reported that about 10% of patients who underwent robot-assisted radical prostatectomy (RARP) developed inguinal hernia (IH) after surgery [1] [2]. It is known that increased abdominal pressure is a causative factor for IH in general population [3]. Therefore, we hypothesized that preoperative urinary straining contributes to the occurrence of IH after RARP.

Study design, materials and methods

Subjects included patients who underwent RARP for prostate cancer in our institution from February 2012 to January 2015. Those with previous/concomitant IH history, concurrent IH-prophylaxis surgery, and follow-up < 1 year were excluded. Demographic and clinical profiles were collected from medical records. Every RARP video record was reviewed by a blinded urologist to verify the existence of a patent processus vaginalis (PPV). Univariate and multivariate Cox proportional hazards models were used to determine relationships between post-RARP IH and age, body mass index (BMI), previous lower abdominal surgery, total International Prostate Symptom Score (IPSS), IPSS voiding score, IPSS storage score, IPSS question 5 (weak stream) and 6 (straining) score, maximum urethral closing pressure (MUCP) and functional profile length (FPL) on urethral pressure profile, prostate weight, and PPV. Pre- and postoperative IPSS, MUCP, and FPL were included.

Results

Patients' characteristics are shown in Table 1. Of 284 patients in the study, 42 (14.7%) developed IH at a median duration of 8 months (interquartile range, 6-16) after RARP. On univariate Cox proportional hazards models, BMI \ge 23, preoperative IPSS question 5 score > 2, preoperative IPSS question 6 score > 2, and the existence of PPV were significantly correlated with the occurrence of post-RARP IH (HR 0.51, 95% CI 0.27 – 0.95, p = 0.03; HR 2.29, 95% CI 1.19 – 4.40, p = 0.01; HR 3.78, 95% CI 1.89 – 7.53, p < 0.001; HR 3.48, 95% CI 2.35 – 5.17, p < 0.001, respectively)(Table 2). On multivariate Cox proportional hazards models, preoperative IPSS question 6 score > 2 and the existence of PPV were significantly correlated with the occurrence of post-RARP IH (HR 4.17, 95% CI 2.07 – 8.37, p < 0.001; HR 3.67, 95% CI 2.36 – 5.69, p < 0.001)(Table 3). There were no significant associations between post-RARP IH and the following factors: past history of pelvic surgery, prostate volume, pre- and postoperative total IPSS score, IPSS voiding score, IPSS storage score, MUCP and FPL, and postoperative IPSS question 5 and 6 score.

Interpretation of results

Our study indicates that (1) post-RARP IH developed in 14.7% patients, (2) preoperative IPSS question 6 score > 2 and the existence of PPV were significantly correlated with the occurrence of post-RARP IH. It is possible that patients with high IPSS 6 score tend to strain for urination. Chronic strain during urination, and overstretching of musculoaponeurotic structures around the internal inguinal ring via PPV during RARP could disrupt anti-hernia mechanism around the internal ring, resulting in the occurrence of inguinal hernia after RARP.

Concluding message

Preoperative urinary straining and PPV were predictive of de novo IH after RARP. Prophylactic surgery should be considered to perform during surgery in patients with high-risk for de novo IH.

Age, years, SD†		66 ± 6	
Body mass index, SD†		23.5 ± 3.5	
PSA‡, ng/mL, SD†		11.7 ± 12.2	
Operative time, minutes, SD†		170 ± 45	
	1	99	
	2	82	
Gleason grade group	3	38	
	4	49	
	5	16	
	pT0	9	
	pT2a	39	
pT stage	pT2b	14	
	pT2c	126	
	pT3a	57	
	pT3b	13	
pN stage	pNx	85	
pin stage	pN0	199	

Table 1 Patients' characteristics + SD: standard deviation, + PSA: prostatic specific antigen

Table 2 Univariate analysis of clinical factors for de novo inguinal hernia

	-		
	p-value	95% Confidence Intervals	Hazard Ratio
Age (≧70 years: <70 years)	0.16	0.79-3.76	1.73
Body mass index (≧23: <23)	0.03	0.27-0.95	0.51
Previous pelvic surgery (present: absent)	0.35	0.21-1.72	0.61
IPSS† total score (>10: ≤10)	0.44	0.66-2.52	1.29
IPSS† voiding score (>5: ≤5)	0.49	0.64-2.48	1.26
IPSS† question 5 score (>2: ≤2)	0.01	1.19-4.40	2.29
IPSS† question 6 score (>2: ≤2)	<0.001	1.89-7.53	3.78
Max Urethral Closing Pressure (\geq 80 cm H ₂ O: <80 cm H ₂ O)	0.84	0.48-1.80	0.93
Functional Profile Length (≧4 cm: <4cm)	0.32	0.71-2.69	1.39
Prostate volume (≧35 g: <35 g)	0.67	0.60-2.10	1.14
PPV‡ (present: absent)	<0.001	2.35-5.17	3.48

† IPSS: international prostate symptom score, ‡ PPV: patent processus vaginalis

Table 3 Multivariate analysis of clinical factors for de novo inguinal hernia.

† IPSS: international prostate symptom score, ‡ PPV: patent processus vaginalis

		p-value	95% Confidence Intervals	Hazard Ratio
	Body mass index (≧23: <23)	0.12	0.30-1.15	0.59
	IPSS† question 5 score (>2: ≤2)	0.15	0.81-3.83	1.76
	IPSS† question 6 score (>2: ≤2)	<0.001	2.07-8.37	4.17
	PPV‡ (present: absent)	<0.001	2.36-5.69	3.67

References

1. Patent processus vaginalis in adults who underwent robot-assisted laparoscopic radical prostatectomy: Predictive signs of postoperative inguinal hernia in the internal inguinal floor. Dong Hoon Lee, et al. Int.J.Urol. (2013), 20: 177-182

2. Incidence, Risk Factors and a Novel Prevention Technique for Inguinal Hernia after Robot-Assisted Radical Prostatectomy. Masaki Shimbo, et al. Urol Int (2017), 98(1): 54-60.

3. The epidemiology of inguinal hernia. A survey in western Jerusalem. Abramson JH, et al. J Epidemiol Community Health 1978, 32(1):59-67.

Disclosures

Funding: None Clinical Trial: Yes Public Registry: No RCT: No Subjects: HUMAN Ethics Committee: The ethics committee of Nagoya University Graduate School of Medicine Helsinki: Yes Informed Consent: No