Author(s) B A O'Reilly¹, A Kosaka², T Chang², APDW Ford², R Popert¹, J.M Rymer¹, S.B McMahon³.

¹ Departments of Gynaecology and Urology, Guy's and St. Thomas' Hospitals, London, UK.² Centre for Biological Research, Roche Bioscience, Palo Alto, CA, USA.³ Neuroscience Research Centre, Kings College London, UK.

Title (type in CAPITAL LETTERS, leave one blank line before the text)

A QUANTITATIVE COMPARISON OF PURINOCEPTORS IN HUMAN FETAL AND ADULT BLADDER

Introduction

Human fetal bladder innervation has only been studied to a limited extent and although there is evidence that ATP acts as a co-transmitter in adult human bladder via the P2X receptors it remains undetermined whether these play a role in the developing bladder.

<u>Methods</u>

TaqMan RT-PCR provides a system for the detection and analysis of RNA. Five complete post-mortem fetal bladders were obtained at 16 weeks to full-term and divided into segments (n=12). Adult bladder samples were obtained from patients requiring bladder biopsy (n=4). Total RNA was extracted from each sample and 10ng of this used for individual PCR reactions. An ABI 7700 machine determined expression levels of the seven P2X genes/ng of total RNA.

<u>Results</u>

In adult bladder, P2X1 was by far the predominant purinergic receptor at the RNA level, the remainder consistently present in the order P2X1>>P2X4>P2X7>>P2X5>P2X2>>P2X3=P2X6=0. In fetal bladder the expression of P2X1 was much lower than in adult bladder; P2X4 and P2X7 were also present predominantly in the order P2X1=P2X4>P2X7>>P2X5>>P2X3=P2X6=0. Also P2X1 expression migrated from being situated predominantly in the dome early in gestation to the body of the bladder towards term.

Conclusion

P2X1 is the predominant receptor subtype in the adult human bladder. There is a distinct difference in P2X expression profile between fetal and adult human bladder. The most striking being that P2X1 is expressed at a much lower level in the fetal compared with adult bladder. Since a fetus does not need to micturate in the same way as an adult does, P2X1 is not needed during the development of the bladder.