Kageyama S, Shinbo H, Hayami S, Watanabe T, Suzuki K, Fujita K.

Departmentt of Urology, Hamamatsu Univeristy School of Medicine, Hamamatsu, Japan.

OVERACTIVE BLADDER SMOOTH MUSCLE CONTRACTION AFTER ATP STIMULATION UNDER A CALCIOUM FREE CONDITION

Aim of Study

We observed the overactive contractions of bladder muscle strips when extracellular ${\rm Ca}^{2+}$ was supplied after ATP stimulation under ${\rm Ca}^{2+}$ -free medium. It has been suggested that the depletion of intracellular calcium stores lead to the activation of secondary compensatory influx of ${\rm Ca}^{2+}$ across the plasma membrane. The role of purinergic contraction increases with age and/or an overactive bladder. Both inflammation and ishcemia are known to cause low intracellular ${\rm Ca}^{2+}$. These findings prompted us to clarify the mechanism of the post re-perfusion of Ca2+ solution bladder overactivity.

Methods

Urinary bladders were obtained from Wistar rats at 24 weeks old. The bladder muscle strips 10x2 mm in size were made and transferred to10ml organ baths bubbled with 95%02 and 5%CO2, filled with Krebs-Henseleit (K-H) solution. Changes in the force of contraction of the muscle strips were measured isometrically 1). Calcium depletion was made by changing K-H to calcium free K-H and stimulated with 100 microM ATP. Then, the strip was washed with normal K-H. The strong post-perfusion contraction was modified with calcium mobilized antagonists and prostaglandin (PG) inhibitors.

Results

EGTA and okadaic acid (membrane phosphatase inhibitor) inhibited this postperfusion contraction. However; H-7(protein kinase C inhibitor), ML-9 (myosin
light chain kinase inhibitor), thapsigargin (intracellular calcium store Ca²⁺ATPase inhibitor) showed no effect on the contraction. Indomethacin and selective
PG E2 antagonist showed an inhibitory effect, however PG E1 and F2arufa antagonists