Guus Kramer
Berufsgenossenschaftliche Unfallklinik, Murnau, Germany
CALCULATION OF BLADDER WALL THICKNESS CHANGES IN A
SYMMETRICALLY EXPANDING, NON-SPHERICAL BLADDER

Methods: The usual geometrical calculations are used in this procedure. The origin of the co-ordinate system is chosen in the lumen of the empty bladder. The smallest crosssectional size is measured as $2 x_{0}$ and defines the x-axis of the co-ordinate system. Perpendicular to this cross-section and mutually perpendicular the cross-sections along the y - and z-axes are measured $2 y_{0}, 2 z_{0}$. The volume of the bladder V_{t} now is: $V_{t}=k \cdot x_{0} \cdot y_{0} \cdot z_{0}$. For a spherical or ellipsoid bladder $k=4 \pi / 3$, for a spherical bladder moreover $x_{0}=y_{0}=z_{0}=r$. For a bladder, degenerated to a rectangular parallelepiped (a box) $k=8$. With $y_{0}=a \cdot y_{0}$ and $\mathrm{z}_{0}=\mathrm{b} \cdot \mathrm{x}_{0}(\mathrm{a}, \mathrm{b} \geq 1), \mathrm{V}_{\mathrm{t}}=\mathrm{k} \cdot \mathrm{a} \mathrm{b} \cdot x_{0}{ }^{3}=\mathrm{k}^{\star} \mathrm{x}_{0}{ }^{3}$. The wall thickness of the empty bladder in for instance the x direction is $\alpha \cdot x_{0}(0 \leq \alpha \leq 2)$; $\alpha=1$ when both "front" and "back" wall are equalsized. When the bladder is filled with a volume V_{V}, it is assumed that the expansion of the bladder is symmetrical, that is linear in all three dimensions, meaning that after filling the total volume $V_{e}=V_{1}+V_{t}$ is calculated as $k \cdot x_{e} \cdot y_{e} \cdot z_{e}$. Because of the symmetry of the expansion, the bladder wall thickness also reduces linearly in the three dimensions or, stated otherwise, the inner shape is also symmetrical with the total shape, or equal to $k \cdot x_{1} y_{1} z_{\text {. Thus }} V_{\mathrm{e}}=k^{*} \cdot x_{0}{ }^{3}, V_{1}=k^{*} \cdot x_{0}{ }^{3}$. Linear expansion in the three dimensions means that $x_{e} / x_{0}=y_{e} / y_{0}=z_{e} / z_{0}=p_{e}$ and similar for p_{t}. The wall thickness of the filled bladder for instance in the direction x now is $\mathrm{d}=\mathrm{x}_{\mathrm{e}}-\mathrm{x}_{\text {, }}$, or $\mathrm{d}=\alpha \cdot \mathrm{x}_{0} \cdot\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{)}\right)$. Cubing this equation and rewriting it as $d^{3}=\alpha^{3} \cdot p_{1}^{3} \cdot x_{0}^{3} \cdot\left(p_{e} / p_{0}-1\right)^{3}, d^{3}=\alpha^{3} \cdot V / K \cdot\left(\left\{p_{e}{ }^{3} / p_{1}^{3}\right\}^{1 / 3}-1\right)^{3}\left(K=k^{\star} / \alpha^{3}\right)$, or $d^{3}=V / K \cdot\left(\left\{V_{e} / V\right\}^{1 / 3}-1\right)^{3}$ finally gives $d^{3}=(1 / K)^{1 / 3} \cdot\left(V_{e}^{1 / 3}-V_{1}^{1 / 3}\right)^{3}$. Because $V_{e}=V_{t}+V_{t}$ this means: $\left.d=\left(V_{t} / K\right)^{1 / 3} \cdot\left(\left\{V_{l} V_{t}+\right\}\right)^{1 / 3}-V_{V} / V_{t}\right)$. This relation holds generally for the change in wall thickness in any direction.

Type your text within this frame If $2^{\text {nd }}$ page is needed use Abstract Form A-2.

Type your text within this frame. Use this page only if second sheet is necessary!

