171

Everaert K¹, Kerckhaert W¹, Audenaert M¹, Caluwaerts H¹, Oosterlinck W¹ 1. Ghent University Hospital

THE STAGED IMPLANT DOES INCREASE SUBJECTIVE AND OBJECTIVE IMPROVEMENT IN PATIENTS WITH VOIDING DIFFICULTIES SELECTED FOR SACRAL NERVE STIMULATION

Aims of Study

The aim was to evaluate in a prospective, randomized setting if the 2-stage implant, compared to a 1-staged implant, leads to a superior subjective or objective outcome of sacral nerve stimulation after implantation of the pulse generator in patients with voiding dysfunction.

Methods

From September 2000 till January 2003 we implanted a sacral (S3) foramen lead (model 3080) and a pulse generator (Interstim) in 23 patients with non-obstructive voiding difficulties. All patients were first evaluated for treatment by a 4-7 days (3days diary) percutaneous nerve evaluation test (PNE) and were randomized in a 1-stage or a 2-stage (1) implant if residual urine decreases with more then 50%. One patient was excluded as the 2-staged implant was performed for reasons of an inconclusive PNE. Patients were randomized according to their residual urine at baseline and age. The 2-stage implant is evaluated during 3-5 weeks (3 days diary/week). A follow-up visit was done at 3, 12 and 24 months after implantation of the pulse generator. Subjective improvement was evaluated with a visual analogue scale (VAS) for general well-being and for well-being related to bladder symptoms (scored from 0-100). Objective improvement was assessed on voiding/residual urine diaries. Residual urine measurements, if relevant, were obtained with intermittent catheterization (ambulatory patients) or ultrasound (hospitalized patients). Data are presented as mean+/-SD or median (95% range) as appropriate. Statistical analysis was done with a Wilcoxon test (paired if possible), Chi2-test and multiple regression analysis.

Table 1: Randomisation and population description of 22 patients with overactive bladder symptoms.

	1-stage implant	2-stage implant
Ν	11	11
Age (years)	50+/-13	51+/-12
Gender (n)	1 men, 10 women	3 men, 9 women
Follow-up (months)	16+/-8	19+/-9
Abnormal health questionnaire (n)*	5	7
3-months follow-up (n)	11	11
12-months follow-up (n)	9	10
24 months follow-up (n)	6	8
VAS score (Qol general well-being)	27+/-18	24+/-21
VAS score (Qol related to bladder)	14+/-10	14+/-13
Micturition volume (ml)	190(9-258)	155(0-290)
Residual urine (ml)	225(110-371)	267(130-394)

No significantly differences were found (Wilcoxon, Chi2).

*Personality disorder: somatoform (n=8), depressive (n=7), anxiety (n=4), eating or drinking disorder (n=3).

<u>Results</u>

Multiple regression analysis revealed that the outcome (residual urine at 24 months) was positively related to the residual urine at baseline and with the 2-stage implant (F ratio 4.49, p=0.027). We have seen 4/23 failures (2 never functioned, 1 failed at 4 months and 1 at 1 year) and 3/4 were 1-stage implants, 1 was a 2-staged implant (Chi2 p>0.05). Three patients were put back on intermittent catherization and 1 Bricker derivation was created.

Table 2: Subjective improvement of the quality of life related to bladder symptoms assessed with a visual analogue scale.

	1-stage implant	2-stage implant	1 vs. 2-stage
PNE	90+/-8*	88+/-11*	NS
Stage 1	-	88+/-11*	NS
3 months follow-up	75+/-27*	72+/-26*	NS
12 months follow-up	55+/-29**	79+/-13*	NS
24 months follow-up	52+/-33	78+/-25*	p<0.05

*p<0.01; **p<0.05, compared to baseline.

No significant difference between PNE and stage 1 of the 2-stage implant.

Table 3: Objective impro	vement of voiding dy	sfunction following s	acral nerve stimulation.

Residual urine (ml)	1-stage implant	2-stage implant	1 vs. 2-stage
PNE	23 (1-55)*	30 (3-62)*	NS
Stage 1	-	29 (12-69)*	NS
3 months follow-up	35 (2-131)*	50 (0-101)*	NS
12 months follow-up	20 (0-262)*	38 (0-70)*	NS
24 months follow-up	215 (10-400)	15 (0-204)*	p<0.05

*p<0.05, paired Wilcoxon test compared to baseline

No significant difference between PNE and stage 1 of the 2-stage implant.

Complications are summarized as device related pain (n=5) and painful stimulation (n=2). We needed 14 revisions in order to maintain the effect.

Conclusions

The 2-stage implant is suggested useful in patients with voiding difficulties.

References

Janknegt RA, Weil EHJ, Eerdmans PH. Improving neuromodulation technique for refractory voiding dysfunction: two-stage implant. Urol 1997;78:39-46.