285 Nunn P A¹, Kaan T K², Ford A P¹, Cefalu J S¹ 1. Roche Pharmaceuticals, 2. University of British Columbia

CHARACTERIZATION OF DP AND EP PROSTANOID RECEPTORS ON THE MICTURITION REFLEX

Hypothesis / aims of study

Prostanoids have been shown to regulate urinary bladder function and are likely to act as neuromodulators of afferent transmission by Ao fibres and capsaicin-sensitive C fibres [1]. Conversely, cyclooxygenase (COX) inhibitors have not been shown to be efficacious in treating overactive bladder (OAB). This may be due to opposing elements of the arachidonic acid pathway where some prostanoids are promoting continence while others are stimulating micturition. Multiple prostanoid receptor mRNAs that include those for EP₁, EP₃ and EP₄ were found to be present in dorsal root ganglion cells (DRG) and a majority of the neurons are C-fibres [2]. DP and EP₂ receptors are found on postsynaptic neurons of the dorsal and ventral horn. The aim of this study was to examine the role of the EP and DP receptors in mediating the micturition reflex. AH6809, a DP/EP₁/EP₂/EP₃ receptors antagonist, SC19220, an EP₁ receptor antagonist, butaprost free acid, an EP₂ receptor agonist, and sulprostone, an EP₃ receptor agonist, and BWA 868c, a DP receptor antagonist were administered in the anaesthetized rat refill model to measure their effects in bladder threshold volume (TV) and contraction amplitude (AMP).

Study design, materials and methods

Female Sprague Dawley rats were anesthetized with urethane. The femoral vein and urinary bladder dome were cannulated for the administration of drug and measurement of bladder pressure, respectively. Both ureters were ligated and transected proximal to the ligation. The external urethral orifice was ligated to maintain controlled bladder volumes. Following surgery, the bladder was infused at 100 µl/min until a volume-induced bladder contraction (VIBC) occurred at which time the TV was measured. After 5 minutes the bladder was drained and allowed to rest for 30 minutes. Filling and draining occurred until two consecutive TVs were within 10%. Once two stable baselines were recorded the rats were dosed with either vehicle or drugs (i.v.) 3 minutes prior to the next bladder filling cycle. Data are presented as percent change from the baseline.

Drug		(mg/kg, iv)	Vehicle
סיייכ		Dose	TV (% Chang
able 1:	Effects of DP a	nd EP Agonists	s and Antagoni
<u>esults</u>			

Drug	Dose	TV (% Change)		AMP (% Change)	
Drug	(mg/kg, iv)	Vehicle	Drug	Vehicle	Drug
AH6809	10	-7.19 ± 8.11	-43.50 ± 7.24**	8.74 ± 9.83	36.26 ± 20.17
Sulprostone	0.3	7.50 ± 9.36	98.92 ± 31.13*	4.18 ± 3.83	-21.51 ± 8.16*
SC19220	3	7.67 ± 6.56	10.77 ± 10.59	-8.35 ± 5.79	-5.76 ± 5.62
Butaprost (free acid)	0.3	5.61 ± 8.60	-11.64 ± 11.34	-16.87 ± 5.21	-3.50 ± 6.00
BWA 868c	3	7.67 ± 6.56	-12.47 ± 6.76	-8.35 ± 5.79	-1.68 ± 5.07

<u>Re</u> Ta ists on Refill Model Parameters

Statistical comparisons to vehicle are performed using a two sample t-test with equal or unequal variance assumption; n = 4-9; *0.01 $\leq p < 0.05$, **p < 0.01

Interpretation of results

AH6809, a mixed DP/EP₁/EP₂/EP₃ antagonist, significantly decreased the TV (-43.50%), an effect likely attributed to one or more of these four prostanoid receptors. Further studies with individual prostanoid receptor compounds revealed that only sulprostone, an EP₃ agonist. caused significant changes in TV (+98.92%) and AMP (-21.51%). SC19220, butaprost (free acid), and BWA 868c did not demonstrate any significant effects in bladder TV and AMP. Therefore, the effect of sulprostone led us to believe that the results of AH6809 were due to the blocking of EP₃ receptors. EP₃ receptors play an inhibitory role in bladder contractions by increasing the TV to initiate the micturition reflex. Immunohistochemical studies have confirmed the presence of EP₃ receptors in the rat dorsal root ganglion (DRG) and dorsal

horn of the spinal cord, suggesting their presence on the terminals of primary afferents [3]. The present data demonstrate that EP_3 receptors may play a role in mediating micturition, possibly via actions on the C-fibres in the DRG.

Concluding message

The results suggest that EP_3 receptors are important in mediating the micturition reflex by increasing the bladder TV. EP_3 agonists may potentially be beneficial in treating OAB symptoms.

- 1. Bladder activation: afferent mechanisms. Urology. 2002. 59 (Suppl 5A), 43-50.
- 2. Prostaglandins and cyclooxygenases in the spinal cord. *Prog. Neurobiol.* 2001. **64,** 327-363.
- 3. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. *J. Comp. Neurol.* 2000. **421**, 543-569.