564

Tomoda T¹, Aishima M², Teramoto N³, Takano N⁴, Nakano T⁵, Seki N⁴, Yonemitsu Y⁵, Sueishi K⁵, Naito S⁴, Ito Y³

1. Department of Pharmacology, Urology Graduate School of Medical Sciences, Kyushu University, 2. Department of Pharmacology, Urology, Graduate School of Medical Sciences, Kyushu University, 3. Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, 4. Department of Urology, Graduate School of Medical Sciences, Kyushu University, 5. Department of Pathology, Graduate School of Medical Sciences, Kyushu University

THE EFFECTS OF FLAVOXATE HYDROCHLORIDE ON THE VOLTAGE-DEPENDENT L-TYPE CA2+ CURRENTS IN THE HUMAN URINARY BLADDER

Hypothesis / aims of study

Flavoxate Hydrochloride has been widely utilized in order to treat urinary urge incontinence and pollakisuria for approximately three decades. Flavoxate is well-known to modulate the control of micturition in the central nerve system. In contrast, some reports have suggested that flavoxate may be a pasmolytic agent for detrusor smooth muscles. However, the precise mechanisms regarding_flavoxate-induced detrusor relaxation still remain to be elucidated. In the present study, we investigated the effects of flavoxate on the voltage-dependent nifedipine-sensitive inward Ba²⁺ currents.

Study design, materials and methods

The effects of flavoxate on the voltage-dependent nifedipine-sensitive inward Ba²⁺ currents in human detrusor myocytes were investigated using patch-clamp methods. Tension measurements were also performed to study the effects of flavoxate on high K⁺ solution-induced contraction in the human urinary bladder.

Results

Flavoxate caused a concentration-dependent relaxation of the K⁺-induced contraction in the human urinary bladder. In human detrusor myocytes, flavoxate inhibited the peak amplitude of voltage-dependent nifedipine-sensitive inward Ba²⁺ currents in a concentration-dependent manner. Flavoxate suppressed the peak amplitude of the voltage-dependent nifedipine-sensitive inward Ba²⁺ currents in a voltage-dependent manner. Flavoxate shifted the steady-state inactivation curve of the voltage-dependent Ba²⁺ currents to the left at a holding potential of -90 mV. Immunohistochemical studies indicated the presence of the a_{1C} subunit protein, which is composed of human L-type Ca²⁺ channels.

Interpretation of results

We have been able to demonstrate that flavoxate possesses a direct Ca²⁺ antagonistic action on human detrusor in addition to the actions as a modulator of the micturition centre in CNS.

Concluding message

We have been able to demonstrate that flavoxate caused a detrusor relaxation through the inhibition of L-type Ca^{2+} channels in human detrusor.