APPLIED ANATOMY OF NERVES TO MALE URETHRAL MEMBRANE SPHINCTER

Hypothesis / aims of study
The structure and distribution of continence nerves to male urethral membrane sphincter remains controversial. Improved understanding of neuroanatomy can modified surgical approaches in pelvic surgery. The objective of our study was to provide a precise anatomic evidences for preserving continence nerves in radical prostatectomy and cystectomy.

Study design, materials and methods
Cadaveric dissections were undertaken in 15 adult male formalin fixed specimens (30 hemipelvics) whose average age of death was 52 years. In each cadaver, the continence nerves were traced from extrapelvic way and intropelvic way to their termination in the urethral membrane sphincter. The origin, course and distribution of the branches to the urethral membrane sphincter region were investigated in detail. The dissection was always carried out by the same technique, neural structures were separated by blunt and sharp dissection. Anatomical microscope were used to distinguish small nerve fibers from small strands of connective tissue.

Results
Continence nerves to male urethral membrane sphincter contained branches of inferior hypogastric plexus (IHP), intrapelvic and extrapelvic branches of pudendal nerve. IHP went along the lateral aspect of seminal vesicle and shaped a surgical plane with seminal vesicle, following the surgical plane we can easily separate the two structures in our imitative operations (Fig.1). Pelvic nerves originated from the caudalmost roots of the pelvic splanchnic nerves, which pierced the fascia of the levator ani muscle and run along the surface of the levator ani to enter the urethral sphincter at the 5 and 7 o’clock positions. In 40% of specimens (12 hemipelvics) we found intrapelvic branches which were given by pudendal nerves from extrapelvic. Before leaving the Pudendal canal, pudendal nerve gave an intrapelvic branch that traversed the levator ani to course with the pelvic nerve to innervate the urethral membrane sphincter (Fig.2). The average distance from the point which intrapelvic branche inserted in the urethra to the prostatic apex was (5.3±1.8)mm. In the extrapelvic, the branches originating from the dorsal nerves of penis innervated the urethral membrane sphincter were found in 53.3% of specimens (16 hemipelvics), these nerve branches were located only (4.2±1.1)mm from the prostatic apex, and some of these branches were identified only unilaterally or only 1 branch on each side (Fig.3).

Interpretation of results
It is generally agreed that the autonomic nerve fibers from IHP and the somatic nervous branches from the pudendal nerve innervate the urethral membrane sphincter. But the exact neuroanatomy of these presumptive innervations is not clear. According to the present study, we find the pelvic nerves from IHP run along the levator ani surface and inserted the urethral membrane sphincter at the 5 and 7 o’clock. Of note, the cavernous nerves, also of IHP
origin, were seen to be completely separate from the pelvic nerves. Cavemos nerves had their course within the
envelope of the endopelvic fascia, dorsolateral to the prostate, where its course with the blood vessel of prostate to form
so-called “neurovascular bundles” (Fig. 4). One of the important findings of this study is the presence of intrapelvic
branches of the pudendal nerve which provide somatic supply to the urethral membrane sphincter, so the urethral
membrane sphincter receives dual somatic innervation from both intrapelvic branches and perineal branches of the
peludal nerve. Another interesting finding is the branches come from the dorsal nerve of penis, although it is not the
constant presence on both sides, we think this small branches were also the necessary composition of nervous reflex
of urinary continence. Both the somatic and autonomic innervation contribute to optimal urinary continence. Therefore,
in order to promote postoperative urinary continence, the following handlings must be much accounted of during
radical prostatectomy and cystectomy: firstly, dissection of seminal vesicle should be along the correct plane to avoid
damaging the neural plates of IHP; secondly, division of the posterior urethra should be refrained from injuring the
intrapelvic branches of the pudendal nerve and pelvic nerve; thirdly, don’t isolate the distal urethra excessively to avoid
damaging the urethral membrane sphincter branches from the dorsal nerve of penis; finally, vesico-urethral anastomotic
sutures should avoid the 5 and 7 o’clock areas and only include the 3-4 mm edge of the urethra to avoid snaring the
continence nerves.

Concluding message
The continence nerves to male urethral membrane sphincter are composed of two parts: pelvic nerves and intrapelvic
branches of pudendal nerves innervate the urethral membrane sphincter by intrapelvic ways; perineal nerves and
dorsal nerves of penis course to the urethral membrane sphincter from extrapelvic ways. Therefore, the identification of
the precise anatomy of the continence nerves seems vital to avoid urethral membrane sphincter denervation. Modified
dissections of seminal vesicle and the prostatic apex were crucial for protecting the continence nerves to the urethral
membrane sphincter.

FUNDING: NONE
DISCLOSURES: NONE
HUMAN SUBJECTS: This study was approved by the Ethics Committee of Weifang Medical College and
followed the Declaration of Helsinki informed consent was obtained from the patients.