259

Wuest M¹, Eichhorn B¹, Kaumann A², Ravens U¹

1. Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, 2. Department of Physiology, Development and Neuroscience, University of Cambridge

MURINE DETRUSOR RELAXATION IS MEDIATED THROUGH (2–ADRENO-CEPTORS AND UNRELATED TO CAVEOLAE

Hypothesis / aims of study

Urinary bladder smooth muscle relaxation can be mediated via β -adrenoceptors (β -AR).^[1] Function of β_1 - and β_2 -AR was reported to be associated with caveolae in the cardiovascular system.^[2] Caveolae are flask-shaped plasmalemmal invaginations which are stabilized by members of the caveolin protein family. Genetic deletion of the caveolin-1 (cav-1) protein results in a loss of the caveolae structures in smooth muscle cells.^[3] In this study we have investigated the role of β -AR subtypes mediating detrusor relaxation in wild type (WT) and cav-1 knockout (cav-1 KO) mice.

Study design, materials and methods

Relaxant responses to β -AR stimulation with (-)-isoprenaline were measured in urothelium-denuded detrusor strips precontracted with 40 mM KCI. Experiments were carried out in the presence of phentolamine, 3 μ M, to block α -adrenoceptors. Four strips were usually prepared from the detrusor of one mouse. Long lasting 40 mM KCl contractures were produced on all strips: one served as a time-matched control, another for a control concentration-response curve (CRC) for (-)-isoprenaline, and the remaining two for CRC of (-)-isoprenaline in the presence of antagonists. The following antagonists, pre-incubated for 1h, were used as tools to assess the role of β -AR subtypes: β_1 -AR-selective CGP 20712A (CGP; 300 nM), β_2 -AR-selective ICI 118,551 (ICI; 50 nM) and β_3 -AR-selective L-748,337 (L; 100 nM). Experiments were terminated by inducing nearly complete relaxation of KCI contractures in both WT and cav-1 KO with the adenylyl cyclase activator forskolin (10 μ M). Total mRNA expression of β -ARs was determined in WT and cav-1 KO mice detrusor using quantitative RT Real-time PCR. Results

Contractile dysfunction was noted in detrusor strips from cav-1 KO mice. KCI-evoked contractions were reduced after 45 min to 0.51 ± 0.05 (n = 92/27) vs 0.98 ± 0.06 (n = 139/43) mN·mg⁻¹ wet weight (ww) in WT (p < 0.05). Forskolin relaxed contractions to the same absolute value: 0.11 ± 0.03 vs 0.10 ± 0.02 mN·mg⁻¹ ww in cav-1 KO and WT respectively.

(-)-isoprenaline relaxed detrusor precontracted with with 40 mM KCl with a potency of $-\log EC_{50}$ [M] 8.04 ± 0.08 (n = 34) in WT and 7.76 ± 0.15 (n = 19) in cav-1 KO mice (p > 0.05). The selective β_1 -AR blocker CGP 20712 did not significantly affect the CRC for (-)-isoprenaline in strips from WT and cav-1 KO. In contrast, the selective β_2 -AR blocker ICl 118,551 caused shifts of the CRC for (-)-isoprenaline to higher concentrations in strips from WT (pK_B = 9.32 ± 0.24) and cav-1 KO (pK_B = 9.58 ± 0.25). The β_3 -AR blocker L 748,337 did not affect the CRC of (-)-isoprenaline for neither WT nor cav-1 KO.

The selective β_3 -AR agonists BRL 37,344 and L 755,507 both induced detrusor relaxation in WT and cav-1 KO mice, but their effects were not affected by β -AR antagonists selective for β_1 -AR, β_2 -AR and β_3 -AR. Under preferential β_2 -AR conditions (in the presence of the β_1 -AR antagonist CGP 20712 and β_3 -AR antagonist L 748,337) the β_2 -AR antagonist ICI 118,551 also shifted the CRC for (-)-epinephrine to higher concentrations resulting in a pK_B = 9.58 ± 0.07 in WT mice.

In addition we have also determined the total mRNA expression of the three β -AR in both WT and cav-1 KO detrusor tissue. β_1 -AR mRNA was the most dominant subtype expressed in WT, while mRNA levels of β_2 and β_3 were about 6 to 10-fold lower. Interestingly, expression of mRNA for β_1 -AR and β_2 -AR was unchanged in cav-1 KO, whereas β_3 -AR mRNA was significantly (p < 0.05) reduced in the cav-1 KO tissue. Interpretation of results

Detrusor relaxation in the mouse urinary bladder is almost exclusively mediated via β_2 -ARs. No functional involvement of either β_1 -ARs or β_3 -ARs was detectable. The genetic deletion of cav-1 in the cav-1 KO mice resulted in a contractile dysfunction as shown after stimulation with KCl, which mainly activates postsynaptic voltage-dependent Ca²⁺channels. β -AR mediated detrusor relaxation induced by different β -AR agonists was always less effective in cav-1 KO mice compared to WT indicating an overall dysfunction in relaxation as well. In contrast, the β -AR induced relaxation is mostly mediated by β_2 -ARs in both cav-1 KO and WT, which is seen in the similar affinity values for ICI 118,551. The observed significant lower expression of β_3 -ARs in cav-1 KO seems to have no functional impairment on the β -AR mediated detrusor relaxation in the mouse.

Concluding message

We conclude that catecholamine-evoked detrusor relaxation in the mouse is mostly mediated through β_2 -AR in both WT and cav-1 KO mice. β_2 -AR function is unperturbed by loss of caveolae.

References

- [1] Br. J. Pharmacol. 2006, 147(Suppl. 2), S88-119.
- [2] Br. J. Pharmacol. 2004, 143, 235-245.
- [3] Br. J. Pharmacol. 2007, 150, 261-270.

FUNDING: This study was not externally funded.

ANIMAL SUBJECTS: This study followed the guidelines for care and use of laboratory animals and was approved by Dresden University Clinics Ethical Committee