Video-urodynamic Predictive Factors of Successful Urethral OnabotulinumtoxinA Treatment of Neurogenic or Non-neurogenic Urethral Sphincter Hyperactivity - 423

Lee Y1, Ong H1, Jiang Y1, Jhang J1, Kuo H1

1. Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan

Table 1. The patients and baseline video-urodynamic characteristics between patients with good and poor treatment outcomes

	Good	Poor	Univar
	outcome	outcome	iate
	(n=58)	(n=37)	P value
Age (years)	60.2 ± 22.1	59.3 ± 19.4	0.842
Gender			0.287
Male (n=39)	22 (56.4%)	17 (43.6%)	
Female (n=56)	36 (64.3%)	20 (35.7%)	
Neurogenic (n=42)	27 (64.3%)	15 (35.7%)	0.359
Non-	31 (58.5%)	22 (41.5%)	
neurogenic(n=53)			
First sensation of	122.0 ± 53.2	147.2±67.0	0.046
filling (mL)			
CBC (ml)	309 ± 141	358 ± 126	0.088
Detrusor pressure	36.1 ± 27.9	24.2 ± 19.3	0.027
(cmH ₂ O)			
Abdominal pressure	24.5 ± 27.3	33.8 ± 28.7	0.117
(cmH ₂ O)			
Maximum flow rate	7.64 ± 5.03	5.16 ± 4.46	0.017
(mL/s)			
Post-void residual	169 ± 130	251 ± 149	0.006
(mL)			
Open bladder neck #	56 (87.5%)	8 (12.5%)	<0.001

Table 2. The treatment outcome in patients withneurogenic or non-neurogenic voiding dysfunctionwith good therapeutic outcome

	Voiding	Ν	Baseline	Post-	P value
	dysfunction			treatment	
IPSS	Non-	31	21.3 ± 6.03	$12.7\pm$	0.844
	neurogenic			4.92 *	
	Neurogenic	27	23.4 ± 6.10	$15.8\pm$	
				5.36 *	
Qmax	Non-	31	8.85 ± 3.61	14.1±	0.946
(mL/s)	neurogenic			6.20 *	
	Neurogenic	27	6.63 ± 5.22	$10.6\pm$	
				4.91 *	
Volume	Non-	31	169 ± 77.8	216±	0.408
(mL)	neurogenic			98.4*	
	Neurogenic	27	82.4 ± 73.6	149 ±	
				84.7*	
PVR	Non-	31	141 ± 105	$74.4\pm$	0.993
(mL)	neurogenic			69.0*	
	Neurogenic	27	170 ± 128	91.6±	
				75.4*	
Duration	Non-	31	NA	9.55±	0.033
(M)	neurogenic			4.18	
	Neurogenic	27	NA	$7.44 \pm$	
				2.91	

Aims

This study analyzed treatment outcomes and identified predictive factors for successful urethral onabotulinumtoxinA treatment of voiding dysfunction due to urethral sphincter hyperactivity.

METHODS

Patients with voiding dysfunction due to urethral sphincter hyperactivity were retrospectively reviewed. Patients were treated with injections totaling 100 U of onabotulinumtoxinA into the urethral sphincter. Treatment outcomes were assessed 1 month after treatment using the Global Response Assessment. Treatment outcomes were analyzed by demographic and baseline video-urodynamic characteristics.

RESULTS

Of the 95 patients included, good outcomes were reported in 58 (61.1%) patients. Treatment outcome was not related to age, gender, or voiding dysfunction subtype. Patients with good outcomes had a significantly smaller volume at first sensation of filling (p=0.046), greater Pdet (p=0.027), higher Qmax (p=0.017) and smaller PVR (p=0.006). An open bladder neck during voiding was the only predictor of successful therapeutic outcome (88% good outcomes, 12% poor outcomes, p<0.001). Patients with nonneurogenic voiding dysfunction had a significantly longer therapeutic duration than those with neurogenic voiding dysfunction (9.55±4.18 vs 7.44±2.91 months, p=0.033). Increased urinary incontinence was reported in 18 patients, including 6 with stress urinary incontinence and 12 with urgency urinary incontinence.

CONCLUSIONS

OnabotulinumtoxinA urethral sphincter injection is effective in 61.1% of patients with voiding dysfunction due to neurogenic or non-neurogenic voiding dysfunction refractory to conventional medical treatment. Careful evaluation of the bladder neck opening at baseline provides predictive value for a successful treatment outcome. However, urinary incontinence might be a *de novo* adverse event after the urethral sphincter onabotulinumtoxinA injections.