#528

BOND

UNIVERSITY

ACULTY OF HEALTH SCIENCES

Classification of α₁-adrenoceptors on the porcine superior vesical artery

Damian Nilsson, Russ Chess-Williams, Donna J Sellers Centre for Urology Research, Faculty of Health Sciences and Medicine,

Bond University, Queensland, Australia

Introduction

- The bladder vasculature has become an area of focus in the quest to understand the pathophysiology of bladder dysfunction and LUTS. Hypoperfusion-induced hypoxia can produce bladder dysfunction (1,2) and enhancing perfusion can ameliorate dysfunction in experimental studies (3).
- Vascular smooth muscle tone is regulated via noradrenaline acting at α_1 -adrenoceptors to cause vasoconstriction. There are 3 cloned subtypes of α_{1-} adrenoceptor (α_{1A^-} , α_{1B^-} and α_{1D^-}), and the functional phenotype of the α_{1A} receptor, the $\alpha_{1A/L}$ -adrenoceptor (4).
- Which functional subtype regulates vasoconstriction of the superior vesical artery supplying the porcine bladder is currently unknown.
- The aim was to classify the α_1 -adrenoceptor subtype mediating vasoconstriction of the porcine superior vesical artery.

Methods

- Sections (~4mm) of porcine superior vesical artery (SVA) (internal diameter ~1mm) were isolated from 6-month old pigs and mounted on stirrups in tissue baths containing gassed Krebs-bicarbonate solution at 37°C.
- Developed tension of the circular smooth muscle was recorded via force transducers connected to a PowerLab using LabChart software.
- Contractions to noradrenaline, phenylephrine and the α_{1A} adrenoceptor selective agonist A-61603 were recorded. Concentration-response curves to phenylephrine were obtained in the absence and presence of α_1 -adrenoceptor antagonists silodosin and RS-100329(α_{1A} -selective), BMY-7387(α_{1D} -selective) and prazosin (α_{1A} > α_{1L} -selective). Experiments were performed in the presence of desipramine (1µM), corticosterone (1µM) and propranolol (1µM) to block neuronal & extraneuronal uptake and β & α_2 receptors.
- Control experiments without antagonists were performed to correct for time dependent changes in tissue sensitivity.

Responses of SVA to agonists

• Noradrenaline, phenylephrine and A-61603 caused concentration-dependent contractions of the SVA (Fig. 1). A-61603 was more potent, with the relative potency of agonists A-61603 > phenylephrine ≥ noradrenaline (Table 1).

Table 1: Responses of superior vesical artery to agonists			
Agonist	n	Potency (pEC ₅₀)	Maximum Response (g/mg)
A-61603	6	7.33±0.15**	1.71±0.11
Phenylephrine	9	5.83±0.20	1.76±0.14
Noradrenaline	6	5.47±0.15	2.14±0.11
Data is mean ± SEM. **p<0.01 vs phenylephrine & noradrenaline (ANOVA plus Tukey)			

Effect of antagonists

Results

- The α_{1D}-selective antagonist BMY7378, at relatively high concentrations up to 30µM, failed to antagonise responses to phenylephrine (Fig. 2A). However the α_{1A}-selective antagonists RS-100329 and silodosin produced rightward shifts of phenylephrine curves, at 10nM and 30nM (p<0.01 vs control) (Fig. 2B) and 1nM and 10nM (p<0.05 vs control) (Fig. 2C). Maximal responses to phenylephrine were not significantly affected by RS-100329 or silodosin and the pK_D estimates were 8.48±0.25 and 9.47±0.18, respectively.
- Prazosin shifted phenylephrine concentration-response curves without significantly affecting the maximal response, and with a
 relatively low affinity (pA₂) of 8.63 and pK_D estimate of 8.02±0.06 (Fig. 2D & E).

Conclusion

- The high potency of the agonist A-61603 suggests the presence of functional α_{1A} -adrenoceptors in the porcine superior vesical artery. This is supported by the antagonist data where silodosin and RS-100329 (α_{1A} vs α_{1B} -selective), but not BMY-7378 (α_{1D} -selective), antagonised phenylephrine responses.
- The relatively low affinity estimate for prazosin suggests the presence of the low affinity functional phenotype of the α_{1A} -adrenoceptor.
- In conclusion, contraction of the porcine superior vesical artery is mediated via the low affinity form of the α_{1A}-adrenoceptor (i.e. the α_{1A/L}-adrenoceptor), the same subtype known to mediate contraction of the prostate and erectile tissue.

References

1. Andersson et al. (2017) Ther. Adv. Urol. 9(1): 11-27
 2. Nomiya et al. (2012) Neurourol. Urodyn. 31: 195-200

 2. Goi et al. (2013) J.Urol. 190: 1116-1122
 4. Docherty (2010) Cell Mol. Life Sci. 67(3): 405-17