Sensor platforms for bladder and bowel research

Methods

• Functional studies of pelvic organs require measures of neural and organ activity under physiologic conditions
• Few tools exist to enable conscious monitoring of bladder and bowel activity in specific animal models
• Custom wireless sensors for animal studies
 • Sensing organ pressure & volume
 • Form factor appropriate for the anatomy
• Initial studies used wired sensors
 • Focus on surgical implantation, sensor modalities, and device form factor1,2
 • Wireless functionality demonstrated previously3
• For bladder sensor
 • Lumen pressure
 • Urine volume & concentration
• For bowel sensor
 • Dual pressure sensors in separate regions
 • Stool volume & composition
 • Pressure sensing using a gel-filled compliant media interface
 • Dielectric measurements of organ contents using platinum mesh electrodes

Results – Bladder Sensor

Volume sensor variation with feline urine concentration (a) was partly corrected with a concentration sensor (b). Low overall volume accuracy was sufficient to estimate bladder state (e.g. bladder half full vs bladder empty).

Results – Bowel Sensor

Prototype wired bowel sensors were tested acutely in pigs (a). Sensors were held in place in the bowel using mucosal clips (b).

Conclusions

• In vivo demonstration of wireless bladder and bowel sensor platforms confirmed feasibility of surgical insertion
• Multiple sensor modalities can be used to assess organ function and correct for physiologic variance

Funding provided by NIH SPARC OT2 OD023873 & NIH SPARC OT2 OD024899 (YT, UCLA)
1I McAdams et al. IEEE Eng Med Biol Conf. 2018
2A Smiley et al. IEEE Eng Med Biol Conf. 2018
3A Basu et al. Jour Eng Medicine, 2018

Abstract

#20627

Wireless bladder sensor (a) designed for suprapubic insertion into a feline bladder. The bowel sensor (b) was longer with a flexible form factor that is more appropriate for porcine models.

Chronic implantation of sensor in small (20 mL) feline bladder (a) showed retention at 30 days (b). A 25% loss in bladder capacity occurred with no change to animal behavior, possibly due to tissue adhesion post-surgery.

Pressure sensor calibration curve with linear response and 1.9 cm H\textsubscript{2}O root mean square error.

Bowel sensor detected contractions evoked by stimulation in proximal colon (a) and local phasic contractions in transverse colon separately from a distal manometry catheter (b). Data from anesthetized adult male Yucatan pig. Data generated in collaboration with Drs Larauche and Million et al. (SPARC, UCLA).