Correlation of transient receptor potential cation channel subfamily V proteins in patients with different clinical severity of ketamine cystitis

Hsueh-Hui Yang1, Jia-Fong Jiang2, Hsu-Ien Wang2, Hsu-Chen Huang2, Wei-Jun Zhao2, Han-Choung Kuo3

1 Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
2 Department of Urology, Buddhist Taichung Veterans General Hospital and Taichung University, Taichung, Taiwan

INTRODUCTION

The abuse of ketamine can injure the bladder and cause ketamine cystitis (KCC), which was first documented in a case report in 2007 [1]. KC patients often suffer from increased voiding frequency, urgency, pain, and decreased capacity. It is known that the bladder contractile activity is controlled by the sensory and motor nerve within the muscular layer. However, the specific identity of the mechanical sensor is not clear yet. Transient receptor potential (TRPV) channels expressed in the lower urinary tract are thought to be involved in the physiological and pathophysiological function of the bladder [2]. Here we are interested in the roles of transient receptor potential cation channel subfamily V (TRPV) in the pathophysiology of KC.

AIMS OF STUDY

To investigate the roles of TRPV proteins in the pathogenesis of KC patients using the correlation of these proteins with the severity of clinical symptoms.

STUDY DESIGN, MATERIALS AND METHODS

Bladder tissues from 12 patients with severe KC, and 13 patients with mild KC, and 4 asymptomatic control (AC) subjects were analyzed. All patients with severe KC underwent videourodynamic study followed by urodynamic assessment to determine incontinence and decreased bladder capacity. Patients with mild KC received conservative treatment after cystoscopic hydrodistension. Bladder specimens were removed from partial cystectomy in severe KC and from bladder biopsies in mild KC. Western blot was used to examine the expression level of TRPV proteins in severe KC, mild KC and control. The Pearson test was used for correlation between these protein expression level and the clinical characteristics.

RESULTS

Table 1. Clinical characteristics and Western blot analysis of TRPV proteins in severe KC, mild KC and control.

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>Control</th>
<th>Mild</th>
<th>Severe</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Sex (Male)</td>
<td>2:2</td>
<td>2:10</td>
<td>5:7</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>55.0 ± 4.2</td>
<td>28.2 ± 4.9</td>
<td>27.4 ± 5.2</td>
<td>0.001</td>
</tr>
<tr>
<td>CBC</td>
<td>138.8 ± 50.5</td>
<td>46.9 ± 12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBC</td>
<td>333.3 ± 68.3</td>
<td>127.5 ± 82.2</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>DMS</td>
<td>2.2 ± 1.5</td>
<td>7.5 ± 2.3</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>eGFR</td>
<td>3.1 ± 1.1</td>
<td>5.3 ± 2.9</td>
<td>0.076</td>
<td></td>
</tr>
</tbody>
</table>

Western Blot

- TRPV1 / eGFR: 0.08 ± 0.04, 0.25 ± 0.27, 0.91 ± 0.55. 0.13 (C vs M) 0.004 (C vs S) 0.002 (S vs M)
- TRPV4 / eGFR: 0.04 ± 0.02, 0.06 ± 0.05, 0.23 ± 0.20. 0.045 (C vs S) 0.005 (S vs M)

Table 1. Clinical characteristics and Western blot analysis of TRPV proteins in severe KC, mild KC and control.

Small bladder capacity, larger visual analog scale and dP/dt were observed in the severe KC patients than in the mild KC patients. Compared with mild KC patients and control subjects, the expression of TRPV1 and TRPV4 were significantly increased in the bladder of severe KC patients.

INTERPRETATION OF RESULTS

Figure 1. Maximum bladder capacity positively correlated with cystometric bladder capacity (r = 0.82, p < 0.001) and bladder capacity negatively correlated with WAS (r = 0.75, p < 0.001 for MBC and r = 0.68, p < 0.05 for CBC).

Figure 2. Bladder capacity negatively correlated with TRPV1 (r = 0.68, p = 0.01 for MBC and r = 0.48, p = 0.05 for CBC) and dP/dt positively correlated with TRPV4 (r = 0.56, p < 0.001).

CONCLUSION

Increased TRPV3 and TRPV4 expression are seen in bladder from severe KC patients. TRPV1 may contribute to the pathophysiology of pain and TRPV4 may contribute to the pathophysiology of bladder capacity in KC patients.

REFERENCES