#649

Age depresses α₁-adrenoceptor mediated vasoconstriction of the porcine superior vesical artery

Damian Nilsson, Russ Chess-Williams, Donna J Sellers

Centre for Urology Research, Faculty of Health Science and Medicine Bond University, Queensland, Australia

Introduction

•With the growing worldwide elderly population, the incidence of bladder dysfunction and incontinence is increasing (1).

- •Age is not only a common risk factor for the development of lower urinary tract symptoms, but is also an independent risk factor for cardiovascular diseases such as atherosclerosis.
- •Impaired blood flow, or ischemia of the bladder may play a role in the etiology of bladder dysfunction, although the underlaying mechanisms are unclear (2).

•We have shown that vasoconstriction of the porcine superior vesical artery is mediated via the low affinity form of the α_{1A} -adrenoceptor (i.e. the $\alpha_{1A/I}$ adrenoceptor), the same subtype known to mediate contraction of the prostate and erectile tissue.

•The aim of this study was to determine the effect of ageing on functional α_1 -adrenoceptor subtypes of the porcine superior vesical artery.

Methods

•Superior vesical arteries from female pigs aged young 6months old and older 3-years old were obtained. Sections (~4mm length, ~1mm internal diameter) of superior vesical artery were isolated and mounted on stirrups in tissue baths containing gassed Krebs-Henseleit solution at 37°C. Contractions developed by circular smooth muscle was recorded to a PowerLab using Labchart software.

•Cumulative concentration-responses to phenylephrine, methoxamine and noradrenaline, A-61603 were recorded. Responses to KCI 60mM were also recorded. •Responses of phenylephrine were obtained in the absence and presence of α_1 -adrenoceptor antagonists BMY-7378(α_{1D} -selective), RS-100329 (α_{1A} -selective), prazosin($\alpha_1 > \alpha_{11}$ -selective), RS-17056($\alpha_{1A} > \alpha_{11}$ -selective), tamsulosin($\alpha_{1A/D}$ -selective) and silodosin ($\alpha_{1A/L}$ -selective). •Control experiments without antagonists were performed to correct for time-dependent changes in tissue sensitivity.

Α

Results

Contractile responses on superior vesical artery

- •Phenylephrine caused concentration-dependent contractions with maximal responses being significantly depressed in older animals (P<0.01 vs Young Phenylephrine), by approximately 88% (Figure 1, Table 1).
- •Responses to noradrenaline were significantly depressed, and potency and maximal contractions were decreased in older animal arteries (Figure 1, Table 1).
- •Superior vesical arteries from young animals did not respond to methoxamine, however it did produce a response in older animals, although it was significantly less potent than other agonists (Figure 1, Table 1).
- A-61603 was significantly more potent than other agonists in both age groups (P<0.05 vs Agonists). Potency and maximal contractile responses were significantly depressed in older animals (Figure 1, Table 1) (P<0.05, P<0.01 vs Young A-61603).
- •In contrast, contractile responses to KCI were not affected by age (0.68±0.13 in young arteries and 0.76±0.13 older arteries).

Agonist	Young			3-Year Older				
	n	Potency (pEC ₅₀)	Max. Response (g/mg)	n	Potency (pEC ₅₀)	Max. Response (g/mg)		
Phenylephrine	6	5.83±0.20	1.76±0.14	5	5.57±0.11*	0.20±0.01**		
Noradrenaline	6	5.47±0.15	2.14±0.11	5	4.34±0.14*	0.59±0.05**		
Methoxamine	6	No Response			3.78±0.10*	0.15±0.02*		
A-61603	6	7.33±0.15*	1.71±0.11	5	6.49±0.28*	0.30±0.04**		
Data is mean ± SEM. *P <0.05 vs Young Agonists. *P<0.05 vs Older Agonists.								
**P <0.01 vs Young Phenylephrine. **P <0.01 vs Young Noradrenaline. **P <0.01 vs Young A-61603								

Young Animals

Effects of α_1 -adrenoceptor antagonists on contractile responses

- •BMY-7378, at relatively high concentrations, did not significantly shift phenylephrine responses in both age groups.
- •Tamsulosin (3nM) and silodosin (1nM) significantly shifted phenylephrine curves yielding high affinity estimates (Table 2).
- •RS-100329 antagonised phenylephrine curves yielding high affinity estimates for both age group (Table 2).
- •Prazosin and Rs-17056, two antagonists able to distinguish between α_{1A} adrenoceptor and the phenotypic receptor α_{11} -adrenoceptor, both

Table 2: Antagonist Affinities in young and older porcine superior vesical artery								
Agonist	Young		3-Year Older					
	n	рК _D	n	рК _D				
BMY-7378	5	5.68±0.16	6	No Shift				
Tamsulosin	6	9.99±0.27	5	9.85±0.39				
Silodosin	5	10.1±0.27	5	10.19±0.33				
RS-100329	5	8.82±0.32	6	9.2±0.09				
RS-17056	5	8.16±0.12	4	9.52±0.38***				
Prazosin	6	8.09±0.09	6	9.41±0.21**				

significantly antagonised phenylephrine responses. Both antagonists have a higher affinity for the α_{1A} -adrenoceptor than the α_{1I} -adrenoceptor. Prazosin yielded a lower affinity estimate in the young arteries compared to the older arteries (Table 2). Similarly RS-17056 had a significantly lower affinity in young arteries than in older arteries (Table 2).

Data is mean \pm SEM. pK_D estimates for antagonists on phenylephrine-concentration dependent responses for both age groups. **P<0.01, ***P<0.001 vs Young

Conclusion

- Age depresses α_1 -adrenoceptor-mediated contractile responses of the porcine superior vesical artery.
- Prazosin and RS-17056 affinity data suggest that in older animals vasoconstriction of the porcine superior vesical artery may be mediated by the α_{1A} -adrenoceptor, different to that found in the young animals (α_{11} -adrenoceptor).

References

¹R, Dmochowski, *Ther Adv Urol*, 2009, 1(4), 209-221.

²M, Michel; R, Chess-Williams, S, Hegde, Naunyn-Schmiedeberg's Arch Pharmacol, 2015, 388, 687-694. ³B, Davis; M, Weiner; C, Chapple; R, Chess-Williams, Auton Autacoid Pharmacol, 2015, 34(3-4), 41-49.