Effect of amniotic fluid stem cells on overflow urinary incontinence due to pelvic nerve injury in rats

Ching-Chung Liang, Sheng-Wen Steven Shaw, Tsong-Hai Lee
1 Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
2 College of Medicine, Chang Gung University, Taoyuan, Taiwan
3 Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan

Background and Aim

Radical hysterectomy to treat early-stage cervical cancer can yield good outcome; however, survivors may experience de novo lower urinary tract dysfunctions, which are due to damage of the pelvic nerve innervating the bladder during parametrical dissection. This study was conducted to demonstrate the effects of human amniotic fluid stem cells (hAFSCs) transplantation on bladder dysfunction and molecular changes in rats with bilateral pelvic nerve injuries (PNI).

Introduction

Radical hysterectomy to treat early-stage cervical cancer can yield good outcome with 5-year overall survival up to 80%. However, survivors may experience postoperative lower urinary tract dysfunctions due to damage of the pelvic nerve innervating the bladder during parametrical dissection in radical hysterectomy. To date, no effective treatment has been developed for bladder dysfunction after radical hysterectomy. Our published animal study demonstrated that transplanting human amniotic fluid stem cells into bladder wall could ameliorate bladder dysfunction after focal cerebral ischemia in rat. Until now, no study has been conducted to investigate the effect of hAFSCs on the bladder dysfunction caused by pelvic nerve damage in animal or human. This study wished to examine the effect of hAFSCs transplantation on bladder dysfunction induced by pelvic nerve transaction (PNT).

Methods and Materials

Sixty female adult rats were divided into sham group, bilateral PNI rats and bilateral PNI rats with injection of hAFSCs. The stem cells were obtained from freshly collected amniotic fluid by routine amniocenteses from healthy pregnant donors. Cells were cultured and incubated. Passage 4-6 hAFSCs were collected and prepared to a final concentration of 1 x 10^6 cells/mL phosphate buffered saline. Because PNI interferes with bladder function, hAFSCs at 10 and 28 days after sham or PNI were examined. Density of neurofilaments within bladder nerves and expressions of bladder protein gene product 9.5, growth associated protein 43, nerve growth factor and p75 were studied using immunohistochemistry and real-time RT-PCR.

Table 1. Body weight and bladder weight in sham, PNTand PNT + hAFSCs.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean ± SD</th>
<th>Body weight (gm, Initial)</th>
<th>Body weight (gm, Final)</th>
<th>Bladder weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham 10d</td>
<td>279.4 ± 18.7</td>
<td>277.4 ± 14.5</td>
<td>168.0 ± 28.6</td>
<td></td>
</tr>
<tr>
<td>PNT 10d</td>
<td>271.0 ± 9.9</td>
<td>274.7 ± 13.8</td>
<td>606.2 ± 66.6*</td>
<td></td>
</tr>
<tr>
<td>PNT + hAFSCs 10d</td>
<td>272.1 ± 12.2</td>
<td>276.6 ± 20.1</td>
<td>527.5 ± 79.4*</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.874</td>
<td>0.958</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

1. Bilateral pelvic nerve crush caused hypertrophy of detrusor muscle and increased deposition of collagen and bilateral PNI caused muscle hyperplasia and hypertrophy in bladder wall with increased bladder weight in rats.

2. Bilateral pelvic nerve crush increased bladder size, impaired detrusor contractility and decreased smooth muscle and autonomic innervation. Our study showed that bilateral PNI caused overflow incontinence and increased number of non-voiding contractions.

Conclusions

The current study demonstrates hAFSCs may facilitate the regeneration of pelvic nerves and improve bladder function in a rat model of unilateral or bilateral PNI. Moreover, as a non-invasive stem cell source, hAFSC is readily available from routine amniocenteses. Bladder dysfunction induced by PNI can be improved after hAFSCs transplantation, and PGF2α, GAP-43 and neurotrophins could be involved in the mechanisms of nerve regeneration in PNI bladder.

References

