

REVIEW ARTICLE

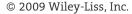
An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for Female Pelvic Floor Dysfunction

Bernard T. Haylen,^{1*,†,§} Dirk de Ridder,^{2,‡,§} Robert M. Freeman,^{3†,‡,§} Steven E. Swift,^{4†,§} Bary Berghmans,^{5‡,§} Joseph Lee,^{6†} Ash Monga,^{7‡,§} Eckhard Petri,^{8†} Diaa E. Rizk,^{9†} Peter K. Sand,^{10†,‡,§} and Gabriel N. Schaer^{11†}
¹University of New South Wales, Sydney, New South Wales, Australia
²University Hospital, UZ Leuven, Belgium
³Derriford Hospital, Plymouth, Devon, UK
⁴Medical University of South Carolina, Charleston, South Carolina
⁵Maastricht University Hospital, Maastricht, the Netherlands
⁶Mercy Hospital for Women, Melbourne, Victoria, Australia
⁷Princess Anne Hospital, Southampton, UK
⁸Klinikum Schwerin, Schwerin, Germany
⁹Ain Shams University, Cairo, Egypt

¹⁰Evanston Continence Centre, Evanston, Illinois

¹¹Kantonsspital, Aarau, Switzerland

Introduction: Next to existing terminology of the lower urinary tract, due to its increasing complexity, the terminology for pelvic floor dysfunction in women may be better updated by a female-specific approach and clinically based consensus report. Methods: This report combines the input of members of the Standardization and Terminology Committees of two international organizations, the International Urogynecological Association (IUGA), and the International Continence Society (ICS), assisted at intervals by many external referees. Appropriate core clinical categories and a subclassification were developed to give an alphanumeric coding to each definition. An extensive process of 15 rounds of internal and external review was developed to exhaustively examine each definition, with decision-making by collective opinion (consensus). Results: A terminology report for female pelvic floor dysfunction, encompassing over 250 separate definitions, has been developed. It is clinically based with the six most common diagnoses defined. Clarity and user-friendliness have been key aims to make it interpretable by practitioners and trainees in all the different specialty groups involved in female pelvic floor dysfunction. Femalespecific imaging (ultrasound, radiology, and MRI) has been a major addition while appropriate figures have been included to supplement and help clarify the text. Ongoing review is not only anticipated but will be required to keep the document updated and as widely acceptable as possible. Conclusion: A consensus-based terminology report for female pelvic floor dysfunction has been produced aimed at being a significant aid to clinical practice and a stimulus for research. Neurourol. Urodynam. 29:4-20, 2010. © 2009 Wiley-Liss, Inc.


Key words: consensus; diagnosis; female pelvic floor dysfunction; symptomatology; terminology; urodynamics

INTRODUCTION

There is currently no single document addressing all elements required for diagnoses in the area of female pelvic

Conflicts of interest:

floor dysfunction in a comprehensive way. Indeed, the diagnoses themselves have not been all completely defined. The term "diagnosis" is defined as "the determination of the nature of a disease; *clinical*: made from a study of the

B.T. Haylen: Assistance from Boston Scientific to attend London Terminology Meeting. D. De Ridder: Advisor for Astellas, Allegan, Ipsen, Bard, American Medical Systems, Xention. Speaker for Astellas, Allegan, American Medical Systems, Bard, Pfizer. Investigator for Ipsen, American Medical Systems, Allergan, Astellas, Johnson & Johnson. R.M. Freeman: Past Advisory Boards: Lilly/BI, Astellas, Pfizer. S.E. Swift, B. Berghmans, J. Lee, E. Petri, D.E. Rizk: No disclosures. A. Monga: Consultant for Gynecare. Advisor for Astellas and Pfizer. P.K. Sand: Advisor for: Allergan, Astellas, GSK, Coloplast, Ortho, Pfizer, Sanofi, Aventis, Watson. Speaker for: Allergan, Astellas, GSK, Ortho, Pfizer, Watson. Investigator for: Boston Scientific, Pfizer, Watson, Ortho, Bioform. G.N. Schaer: Advisor (in Switzerland) for Astellas, Novartis, Pfizer.

 [†]Standardization and Terminology Committees IUGA.
 [‡]Standardization and Terminology Committees ICS.
 [§]Joint IUGA/ICS Working Group on Female Terminology.
 *Correspondence to: Bernard T. Haylen, Associate Professor, St. Vincent's Clinic, Suite 904, 438 Victoria Street, Darlinghurst, 2010 NSW, Australia.
 E-mail: haylen@optusnet.com.au
 Received 16 July 2009; Accepted 16 July 2009
 Published online 15 December 2009 in Wiley InterScience
 (www.interscience.wiley.com)
 DOI 10.1002/nau.20798

symptoms, signs of a disease; *laboratory*": multiple options mentioned.¹ Such a specific report would require a full outline of the terminology for all symptoms, signs, urodynamic investigations for female pelvic floor dysfunction, the imaging associated with those investigations, and the most common diagnoses.

It may have been possible in the past to combine all the terminologies for lower urinary tract function in men, women, and children into one report. The International Continence Society (ICS) has provided leadership in terminology for lower urinary tract dysfunction over decades employing combined or generic reports. The 1988 report by the Committee on the Standardization of Terminology² is one such example. With the increasing specificity and complexity of female diagnoses, a combined report may now be an anachronism. The 2002 report³ still provided the traditional core terminology and some useful modifications, many of which are repeated in this document. However, it also revealed evidence that (i) a coherent and user-friendly combined report may be starting to become too difficult and (ii) the terminology for women, due to the absence of specific diagnoses as well as other femalespecific terminology, may not have been advantaged by this approach.⁴ The need for standardized terminology in female pelvic floor dysfunction to enable accurate communication for clinical and research purposes has been highlighted for some time.⁵ There is indeed the need for a general terminology, forming a "backbone" or "core" terminology to which more specific terminologies can be attached.

A female-specific terminology report should be

- (1) As user-friendly as possible: It should be able to be understood by all clinical and research users.
- (2) Clinically based: Symptoms, signs, and validated investigations should be presented for use in forming workable diagnoses. The second, third, and fourth sections will address symptoms, signs, and urodynamic investigations and current associated pelvic imaging modalities routinely used in the office or urodynamic laboratory to make those diagnoses, respectively. A number of related radiological investigations as well as magnetic resonance imaging (MRI) have also been included. The detailed description of electromyography and related nerve conduction, reflex latency, and other sensory studies contained in Ref.² will again³ not be reinstated here. This report does not specifically address terminology for neurogenic pelvic floor dysfunction.

The fifth section will address the most common diagnoses of pelvic floor dysfunction. The terms³ "urodynamic observation" and "condition" (non-medical) have not been used in this report. The scope of the report will exclude (i) more invasive investigations requiring an anesthetic and (ii) evidence-based treatments for each diagnosis.

(3) Able to indicate origin and to provide explanations: Where a term's existing definition (from one of multiple sources used) is deemed appropriate, that definition will be included and duly referenced. A large number of terms in female pelvic floor function and dysfunction, because of their long-term use, have now become generic, as apparent by their listing in medical dictionaries.

Where a specific explanation is deemed appropriate to explain a change from earlier definitions or to qualify the current definition, this will be included as an addendum to this paper (footnotes i, ii, iii, \dots). Wherever possible, evidence-based medical principles will be followed.

Neurourology and Urodynamics DOI 10.1002/nau

5

As in earlier ICS reports,^{2,3} when a reference is made to the whole anatomical organ, the vesica urinaria, the correct term is the bladder. When the smooth muscle structure known as the m. detrusor urinae is being discussed, then the correct term is detrusor.

It is suggested that acknowledgement of these standards in written publications related to female pelvic floor dysfunction, being indicated by a footnote to the section "Methods and Materials" or its equivalent, to read as follows: "Methods, definitions and units conform to the standards jointly recommended by the International Incontinence Society (ICS) and the International Urogynecological Association, except where specifically noted."

SYMPTOMS

Symptoms: Any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by the woman and indicative of disease¹ or a health problem. Symptoms are either volunteered by, or elicited from the individual, or may be described by the individual's caregiver.^{2,3}

Urinary Incontinence Symptoms

- (i) *Urinary incontinence (symptom)*: Complaint of involuntary loss of urine.ⁱ
- (ii) Stress (urinary) incontinence: Complaint of involuntary loss of urine on effort or physical exertion (e.g., sporting activities), or on sneezing or coughing. N.B.: "activityrelated incontinence" might be preferred in some languages to avoid confusion with psychological stress.
- (iii) Urgency (urinary) incontinence: Complaint of involuntary loss of urine associated with urgency.ⁱⁱ
- (iv) Postural (urinary) incontinence: (NEW) Complaint of involuntary loss of urine associated with change of body position, for example, rising from a seated or lying position.ⁱⁱⁱ
- (v) *Nocturnal enuresis*: Complaint of involuntary urinary loss of urine which occurs during sleep.³
- (vi) Mixed (urinary) incontinence: Complaint of involuntary loss of urine associated with urgency and also with effort or physical exertion or on sneezing or coughing.
- (vii) *Continuous (urinary) incontinence*: Complaint of continuous involuntary loss of urine.^{3,6}
- (viii) Insensible (urinary) incontinence: (NEW) Complaint of urinary incontinence where the woman has been unaware of how it occurred.
- (ix) Coital incontinence: (NEW) Complaint of involuntary loss of urine with coitus. This symptom might be further divided into that occurring with penetration or intromission and that occurring at orgasm.

Bladder Storage Symptoms

 (i) Increased daytime urinary frequency: Complaint that micturition occurs more frequently during waking hours than previously deemed normal by the woman.^{iv}

ⁱ"Continence" is defined as the voluntary control of bladder and bowel function. ⁱⁱ"Urgency" replaces "urge" as the "accepted" terminology for the abnormal rather than the normal phenomenon.

ⁱⁱⁱThis is a common symptom, the mechanism of which has not been adequately researched. It is uncertain whether it should be linked to Urinary Incontinence Symptoms Section (ii) or (iii). ^{iv}Traditionally seven episodes of micturition during waking hours have been

¹⁰Traditionally seven episodes of micturition during waking hours have been deemed as the upper limit of normal, though it may be higher in some populations.⁷

- (ii) Nocturia: Complaint of interruption of sleep one or more times because of the need to micturate.^{3 v} Each void is preceded and followed by sleep.
- (iii) Urgency: Complaint of a sudden, compelling desire to pass urine which is difficult to defer.^{vi}
- (iv) Overactive bladder (OAB, Urgency) syndrome: Urinary urgency, usually accompanied by frequency and nocturia, with or without urgency urinary incontinence, in the absence of urinary tract infection (UTI) or other obvious pathology.

Sensory Symptoms

Sensory symptoms: A departure from normal sensation or function, experienced by the woman during bladder filling.¹ Normally, the individual is aware of increasing sensation with bladder filling up to a strong desire to void.³

- (i) *Increased bladder sensation*: Complaint that the desire to void during bladder filling occurs earlier or is more persistent to that previous experienced. *N.B.*: This differs from urgency by the fact that micturition can be postponed despite the desire to void.
- (ii) Reduced bladder sensation: Complaint that the definite desire to void occurs later to that previously experienced despite an awareness that the bladder is filling.
- (iii) Absent bladder sensation: Complaint of both the absence of the sensation of bladder filling and a definite desire to void.³

Voiding and Postmicturition Symptoms

Voiding symptoms: A departure from normal sensation or function, experienced by the woman during or following the act of micturition.¹

- (i) *Hesitancy*: Complaint of a delay in initiating micturition.
- (ii) Slow stream: Complaint of a urinary stream perceived as slower compared to previous performance or in comparison with others.
- (iii) *Intermittency*: Complaint of urine flow that stops and starts on one or more occasions during voiding.
- (iv) Straining to void: Complaint of the need to make an intensive effort (by abdominal straining, Valsalva or suprapubic pressure) to either initiate, maintain, or improve the urinary stream.
- (v) Spraying (splitting) of urinary stream: Complaint that the urine passage is a spray or split rather than a single discrete stream.
- (vi) *Feeling of incomplete (bladder) emptying*: Complaint that the bladder does not feel empty after micturition.
- (vii) *Need to immediately re-void*: Complaint that further micturition is necessary soon after passing urine.
- (viii) Postmicturition leakage: Complaint of a further involuntary passage of urine following the completion of micturition.
 - (ix) Position-dependent micturition: (NEW) Complaint of having to take specific positions to be able to micturate spontaneously or to improve bladder emptying, for

^vIt is common to void during the night when sleep is disturbed for other reasons—for example, insomnia, lactation—this does not constitute nocturia.⁸ ^{vi}The use of the word "sudden," defined as "without warning or abrupt," used in earlier definitions.²⁸ has been subject to much debate. Its inclusion has been continued. Grading of "urgency" is being developed.

Neurourology and Urodynamics DOI 10.1002/nau

example, leaning forwards or backwards on the toilet seat or voiding in the semi-standing position.

- (x) Dysuria: Complaint of burning or other discomfort during micturition. Discomfort may be intrinsic to the lower urinary tract or external (vulvar dysuria).
- (xi) (Urinary) retention: (NEW) Complaint of the inability to pass urine despite persistent effort.

Pelvic Organ Prolapse (POP) Symptoms

Prolapse symptoms: A departure from normal sensation, structure, or function, experienced by the woman in reference to the position of her pelvic organs. Symptoms are generally worse at the times when gravity might make the prolapse worse (e.g., after long periods of standing or exercise) and better when gravity is not a factor, for example, lying supine. Prolapse may be more prominent at times of abdominal straining, for example, defecation.

- (i) *Vaginal bulging*: Complaint of a "bulge" or "something coming down" towards or through the vaginal introitus. The woman may state she can either feel the bulge by direct palpation or see it aided with a mirror.
- (ii) *Pelvic pressure*: Complaint of increased heaviness or dragging in the suprapubic area and/or pelvis.
- (iii) Bleeding, discharge, infection: Complaint of vaginal bleeding, discharge, or infection related to dependent ulceration of the prolapse.
- (iv) Splinting/digitation: Complaint of the need to digitally replace the prolapse or to otherwise apply manual pressure, for example, to the vagina or perineum (splinting), or to the vagina or rectum (digitation) to assist voiding or defecation.
- (v) *Low backache*: Complaint of low, sacral (or "period-like") backache associated temporally with POP.

Symptoms of Sexual Dysfunction

A departure from normal sensation and/or function experienced by a woman during sexual activity.

- (i) Dyspareunia: Complaint of persistent or recurrent pain or discomfort associated with attempted or complete vaginal penetration.^{vii}
- (ii) Superficial (introital) dyspareunia: Complaint of pain or discomfort on vaginal entry or at the vaginal introitus.
- (iii) *Deep dyspareunia*: Complaint of pain or discomfort on deeper penetration (mid or upper vagina).
- (iv) *Obstructed intercourse*: Complaint that vaginal penetration is not possible due to obstruction.
- (v) Vaginal laxity: Complaint of excessive vaginal laxity.
- (vi) Other symptoms: Refs. 9,10.viii

Symptoms of Anorectal Dysfunction

(i) Anal incontinence (symptom): Complaint of involuntary loss of feces or flatus.^{ix}

^{vii}Dyspareunia, the symptom most applicable to female pelvic floor dysfunction, will depend on many factors including a woman's introital relaxation and/or pain tolerance and her partner's hesitancy or insistence.

^{viii}Other symptoms of female sexual dysfunction including (i) decreased sexual desire, (ii) decreased sexual arousal, (iii) decreased orgasm, and (iv) abstention are less specific for female pelvic floor dysfunction and will not be defined here. The Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ) is a measure of sexual function in women with urinary incontinence or pelvic organ prolapse.⁹

^{ix}Symptoms of defecatory dysfunction are commonly associated with pelvic organ prolapse, particularly posterior vaginal prolapse.

- (b) Liquid.
- (c) *Passive fecal incontinence*: such as soiling without sensation or warning or difficulty wiping clean.
- (d) *Coital fecal incontinence*: occurring with vaginal intercourse.
- (iii) Flatal incontinence: Complaint of involuntary loss of flatus.¹¹
- (iv) *Fecal (rectal) urgency*: Sudden, compelling desire to defecate that is difficult to defer.
- (v) Fecal (flatal) urgency incontinence: Involuntary loss of feces (flatus) associated with urgency.
- (vi) Straining to defecate: Complaint of the need to make an intensive effort (by abdominal straining or Valsalva) to either initiate, maintain, or improve defecation.
- (vii) *Feeling of incomplete (bowel) evacuation*: Complaint that the rectum does not feel empty after defecation.
- (viii) *Diminished rectal sensation*: Complaint of diminished or absent sensation in the rectum.¹¹
- (ix) Constipation: Complaint that bowel movements are infrequent and/or incomplete and/or there is a need for frequent straining or manual assistance to defecate (Rome II Criteria).^x
- (x) *Rectal prolapse*: Complaint of external protrusion of the rectum.
- (xi) Rectal bleeding/mucus: Complaint of the loss of blood or mucus per rectum.

Lower Urinary Tract Pain and/or Other Pelvic Pain

- (i) *Bladder pain*: Complaint of suprapubic or retropubic pain, pressure, or discomfort, related to the bladder, and usually increasing with bladder filling. It may persist or be relieved after voiding.^{3 xi}
- (ii) Urethral pain: Complaint of pain felt in the urethra and the woman indicates the urethra as the site.³
- (iii) Vulval pain: Complaint of pain felt in and around the vulva.³
- (iv) Vaginal pain: Complaint of pain felt internally within the vagina, above the introitus.³
- (v) Perineal pain: Complaint of pain felt between the posterior fourchette (posterior lip of the introitus) and the anus.³
- (vi) Pelvic pain: The complaint of pain perceived to arise in the pelvis, not associated with symptoms suggestive of lower urinary tract, sexual, bowel, or gynecological dysfunction. It is less well defined than the above types of localized pain.
- (vii) *Cyclical (menstrual) pelvic pain*: Cyclical pelvic pain related to menses that raises the possibility of a gynecological cause.
- (viii) *Pudendal neuralgia*: Burning vaginal or vulval (anywhere between anus and clitoris) pain associated with tenderness over the course of the pudendal nerves. Recently, five essential criteria (Nantes criteria) have been proposed for

^{xi}The definitions of pelvic pain and especially chronic pelvic pain are being debated in several societies with a view to simplification and restructuring of the classification. The chronic (present for at least 3 months) pain syndromes have not been included till consensus is reached. the diagnosis of pudendal neuropathy¹³: (a) pain in the anatomical region of pudendal innervation; (b) pain that is worse with sitting; (c) no waking at night with pain; (d) no sensory deficit on examination; (e) relief of symptoms with a pudendal block.

7

(ix) Chronic lower urinary tract and/or other pelvic pain syndromes.^{xi}

Lower Urinary Tract Infection

- (i) Urinary tract infection (UTI): Scientific diagnosis of a UTI is the finding of microbiological evidence of significant bacteriuria and pyuria^{xii} usually accompanied by symptoms such as increased bladder sensation, urgency, frequency, dysuria, urgency urinary incontinence, and/or pain in the lower urinary tract.
- (ii) Recurrent urinary tract infections (UTIs): At least three symptomatic and medically diagnosed UTI in the previous 12 months.^{xiii} The previous UTI(s) should have resolved prior to a further UTI being diagnosed.
- (iii) Other related history: For example, hematuria, catheterization.

SIGNS

Sign: Any abnormality indicative of disease or a health problem, discoverable on examination of the patient; an objective indication of disease¹ or a health problem.

Urinary Incontinence Signs

All examinations for urinary incontinence are best performed with the woman's bladder comfortably full.

- (i) Urinary incontinence: Observation of involuntary loss of urine on examination: this may be urethral or extraurethral.³
- (ii) Stress (urinary) incontinence (clinical stress leakage): Observation of involuntary leakage from the urethra synchronous with effort or physical exertion, or on sneezing or coughing.³
- (iii) Urgency (urinary) incontinence: Observation of involuntary leakage from the urethra synchronous with the sensation of a sudden, compelling desire to void that is difficult to defer.
- (iv) Extraurethral incontinence: Observation of urine leakage through channels other than the urethral meatus, for example, fistula.
- (v) Stress incontinence on prolapse reduction (occult or latent stress incontinence): (NEW) Stress incontinence only observed after the reduction of co-existent prolapse.^{xiv}

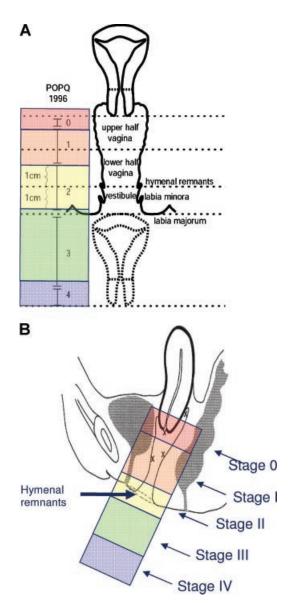
⁽a) Solid.

^xRome II Criteria for Symptoms of Anorectal Dysfunction Section (ix): Complaint that bowel movements are infrequent (<3/week) and need to strain, lumpy or hard stool bloating, sensation of incomplete evacuation, sensation of anorectal obstruction, or blockage abdominal pain, need for manual assistance, in more than one-quarter of all defecations.¹²

 $^{^{\}rm xii}$ Commonly suggested criteria for: (i) bacteriuria are >100,000 CFU/ml on voided specimen or >1,000 CFU/ml on catheterized specimen; (ii) pyuria are >10 WBC/mm³.

x^{iv}Stress incontinence on prolapse reduction is a sign frequently alluded to but not properly defined to date. The means of reducing the prolapse will vary. A pessary or ring might, at times, obstruct the urethra, giving a false negative for this sign.

Signs of Pelvic Organ Prolapse


All examinations for POP should be performed with the woman's bladder empty (and if possible an empty rectum). An increasing bladder volume has been shown to restrict the degree of descent of the prolapse.¹⁴ The choice of the woman's position during examination, for example, left lateral (Sims), supine, standing, or lithotomy, is that which can best demonstrate POP in that patient and which the woman can confirm, for example, by use of a mirror or digital palpation. The degree of prolapse may be worse later in the day (after a lengthy time in the erect position) than it is earlier in the day. The hymen remains the fixed point of reference for prolapse description.¹⁵

- (i) Pelvic organ prolapse (definition): The descent of one or more of the anterior vaginal wall, posterior vaginal wall, the uterus (cervix), or the apex of the vagina (vaginal vault or cuff scar after hysterectomy). The presence of any such sign should be correlated with relevant POP symptoms. More commonly, this correlation would occur at the level of the hymen or beyond.
- (ii) Pelvic organ prolapse (POPQ) (Staging 3, 15):
 - Stage 0: No prolapse is demonstrated.
 - Stage I: Most distal portion of the prolapse is more than 1 cm above the level of the hymen.
 - Stage II: Most distal portion of the prolapse is 1 cm or less proximal to or distal to the plane of the hymen.
 - Stage III: The most distal portion of the prolapse is more than 1 cm below the plane of the hymen.
 - Stage IV: Complete eversion of the total length of the lower genital tract is demonstrated.^{xv}
- (iii) Uterine/cervical prolapse: Observation of descent of the uterus or uterine cervix.
- (iv) Vaginal vault (cuff scar) prolapse: Observation of descent of the vaginal vault (cuff scar after hysterectomy).^{18 xvi}
- (v) Anterior vaginal wall prolapse: Observation of descent of the anterior vaginal wall. Most commonly this would be due to bladder prolapse (cystocele, either central, paravaginal, or a combination). Higher stage anterior vaginal wall prolapse will generally involve uterine or vaginal vault (if uterus is absent) descent. Occasionally, there might be anterior enterocele (hernia of peritoneum and possibly abdominal contents) formation after prior reconstructive surgery.^{18 xvi}
- (vi) Posterior vaginal wall prolapse: Observation of descent of the posterior vaginal wall. Most commonly, this would be due to rectal protrusion into the vagina (rectocele). Higher stage posterior vaginal wall prolapse after prior

^{xv}The ICS POP quantification system which describes the topographic position of six vaginal sites is the subject of a review by the IUGA Standardization and Terminology Committee with a view to simplification. These sites and the methodology behind the measurement format¹⁵ have therefore not been included here. Consensus was not reached on inserting a valuation of the different prolapse stages into the report, though it will be subject to ongoing discussion: for example, considering Stage 0 or 1 as different degrees of normal support. Considering Stage 2 or more, where the leading edge is at or beyond the hymen as definite prolapse.^{16,17}

^{xvi}Most gynecologists are generally comfortable with the terms cystocele, rectocele, vaginal vault prolapse, and enterocele. Coupled with the brevity of these terms and their clinical usage for up to 200 years,¹⁸ the inclusion of these terms is appropriate. Some regard it as important to surgical strategy to differentiate between a *central cystocele* (central defect with loss of rugae due to stretching of the subvesical connective tissue and the vaginal wall) and a *paravaginal defect* (rugae preserved due to detachment from the arcus tendineous fascia pelvis).

Neurourology and Urodynamics DOI 10.1002/nau

Fig. 1. A,**B**: Prolapse staging – 0, I, II, III, and IV (uterine – by the position of the leading edge of the cervix).

hysterectomy will generally involve some vaginal vault (cuff scar) descent and possible enterocele formation.^{18 xvi} Enterocoele formation can also occur in the presence of an intact uterus.

Other Pelvic Examinations/Signs^{2,3,19}

The internal examinations are generally best performed with the woman's bladder empty.

- (i) *Vulval examination*: Abnormalities include cysts, other tumors, atrophic changes, or lichen sclerosis.
- (ii) Urethral inspection/palpation:
 - (a) *Urethral mucosal prolapse*: Prolapse, generally circumferential and larger, of the distal urethral urothelium.

- (b) *Urethral caruncle*: Smaller eversion of the urethral urothelium, generally involving the posterior lip.
- (c) *Urethral diverticulum*: The presence of a sac opening from the urethra. It might be suspected by a lump or tenderness along the line of the urethra or external urethral discharge on urethral massage.
- (iii) Vaginal examination: Examination for vaginal length and mobility, presence of scarring and/or pain, and estrogenization. The location of any vaginal pain should be noted. Included here is any tenderness over the course of the pudendal nerve (see Lower Urinary Tract Pain and/ or Other Pelvic Pain Section (viii)).
- (iv) Bimanual pelvic examination: Observations for any pelvic mass or unusual tenderness by vaginal examination together with suprapubic palpation.
- (v) Pelvic floor muscle function^{3,19}: Can be qualitatively defined by the tone at rest and the strength of a voluntary or reflex contraction as strong, normal, weak or absent, or by a validated grading symptom. Voluntary pelvic floor muscle contraction and relaxation may be assessed by visual inspection, by digital palpation (circumferentially), electromyography, dynamometry, perineometry, or ultrasound. Factors to be assessed include muscle strength (static and dynamic), voluntary muscle relaxation (absent, partial, complete), muscular endurance (ability to sustain maximal or near maximal force), repeatability (the number of times a contraction to maximal or near maximal force can be performed), duration, coordination, and displacement. It is desirable to document findings for each side of the pelvic floor separately to allow for any unilateral defects and asymmetry. The ICS report into the standardization of terminology of pelvic floor muscle function and dysfunction¹⁹ provides a fuller description of the assessment of pelvic floor muscle function including the following:
 - (a) Normal pelvic floor muscles: Pelvic floor muscles which can voluntarily and involuntarily contract and relax.
 - (b) Overactive pelvic floor muscles: Pelvic floor muscles which do not relax, or may even contract when relaxation is functionally needed, for example, during micturition or defecation.
 - (c) *Underactive pelvic floor muscles*: Pelvic floor muscles which cannot voluntarily contract when this is appropriate.
 - (d) *Non-functioning pelvic floor muscles*: Pelvic floor muscles where there is no action palpable.
- (vi) Examination for levator (puborectalis) injury: The puborectalis muscle may be assessed for the presence of major morphological abnormalities by palpating its insertion on the inferior aspect of the os pubis. If the muscle is absent 2–3 cm lateral to the urethra, that is, if the bony surface of the os pubis can be palpated as devoid of muscle, an "avulsion injury" of the puborectalis muscle is likely.²⁰
- (vii) *Perineal examination*¹⁹: When the patient is asked to cough or Valsalva, the perineum should show no downward movement; ventral movement may occur because of the guarding actions of the pelvic floor muscles.
 - (a) *Perineal elevation*: This is the inward (cephalad) movement of the vulva, perineum, and anus.
 - (b) *Perineal descent*: This is the outward (caudal) movement of the vulva, perineum, and anus.
- (viii) Rectal examination: Observations can include:
 - (a) *Anal sphincter tone and strength*: Assessment on digital examination, as good or poor in the absence of any quantitative assessment.

(b) Anal sphincter tear: May be recognized as a clear "gap" in the anal sphincter on digital examination.

9

- (c) Confirm presence or absence of rectocele and if possible, differentiate from enterocele. Diagnose perineal body deficiency.
- (d) Confirm presence or absence of fecal impaction.
- (e) *Other rectal lesions*: Intussusception, rectovaginal fistula, or tumor.
- (f) Anal lesions: Hemorrhoids, fissure.
- (g) Other perianal lesions: Anocutaneous fistula.

Other Relevant Examinations/Signs²

The following general examinations and signs may be relevant:

- (i) Neurological signs: For patients with possible neurogenic lower urinary tract or pelvic floor dysfunction, there should be particular note of those neurological signs related to S2– S4, but these should be complemented by a more general neurological examination as indicated.
- (ii) *Abdominal signs*: Among numerous possible abdominal signs are:
 - (a) *Bladder fullness/retention*: The bladder may be felt by abdominal palpation or suprapubic percussion.
 - (b) Other abdominal masses or distension (e.g., ascites).
 - (c) Scars: Indicating previous relevant surgery or traumas.
 - (d) Renal area: Examination for tenderness, masses.

Frequency volume chart/Bladder diary

 (i) Frequency-volume chart (FVC): The recording of the time of each micturition and the volume voided for at least 24 hr. Two or 3 days of recording (not necessarily consecutive) will generally provide more useful clinical data.

Information obtained will confirm:

- (a) *Daytime urinary frequency*: Number of voids by day (wakeful hours including last void before sleep and first void after waking and rising).
- (b) Nocturnal frequency/nocturia: Number of times sleep is interrupted by the need to micturate. Each void is preceded and followed by sleep.
- (c) Twenty-four-hour frequency: Total number of daytime voids and episodes of nocturia during a specified 24-hr period.
- (d) *Twenty-four-hour urine production*: Summation of all urine volumes voided in 24 hr.
- (e) *Maximum voided volume*: Highest voided volume recorded.
- (f) Average voided volume: Summation of volumes voided divided by the number of voids.
- (g) Median functional bladder capacity: Median maximum voided volume in everyday activities.
- (h) Polyuria: Excessive excretion of urine resulting in profuse and frequent micturition.³ It has been defined as over 40 ml/kg body weight during 24 hr or 2.8 L urine for a woman weighing 70 kg.²¹
- (i) *Nocturnal urine volume*: Cumulative urine volume from voids after going to bed with the intention of sleeping to include the first void at the time of waking with the intention of rising (excludes last void before sleep).

This simple chart allows you to record the fluid you drink and the urine you pass over 3 days (not necessarily consecutive) in the week prior to your clinic appointment. This can provide valuable information.

• Please fill in approximately when and how much fluid you drink, and the type of liquid.

• Please fill in the time and the amount (in ml, or ounces) of urine passed, and mark with a star if you have leaked or mark with a "P" if you have needed to change your pad. (Please find below an example of how to complete this form.)

DATE/TIME DD.MM.YY	LIQUID INTAKE (ml)	VOLUME OF URINE (ml)	LEAKS	PAD CHANGE
21.02.06			\$	
0215		150		
0715		250		
0800	Mug coffee 250ml			
0820		60		Р
0930	Cup orange juice		\$	
1000	Cup orange juice	100		
1200	2 mugs coffee			
1400		300		
1430		20		
1530	Cup of tea 200ml			Р
1600		100	53	
1800	Cup of tea 200ml			
1900		100		
2000	Glass beer 200ml	20		
2030	Glass wine 50ml		☆	
2200				Р
2300		150		

SUMMARY

Frequency = 9; Nocturia = 1; Urine production / 24hr = 1250ml; Maximum voided volume = 300ml; Average voided volume = 125ml.

Fig. 2. Example of a bladder diary.

- (j) Nocturnal polyuria: Excess (over 20–30% age dependent) proportion of urine excretion (nocturnal voided volume/total 24 hr voided volume \times 100%) occurs at night (or when patient is sleeping).^{xvii}
- (ii) Bladder diary: Adds to the FVC above, the fluid intake, pad usage, incontinence episodes, and the degree of incontinence. Episodes of urgency and sensation might also be recorded, as might be the activities performed during or immediately preceding the involuntary loss of urine. Additional information obtained from the bladder diary involves severity of incontinence in terms of leakage episodes and pad usage.

Quantification of the amount of urine lost over the duration of testing, by measuring the increase in the weight of the perineal pads (weighed pre- and posttesting) used. This may give a guide to the severity of incontinence. Different durations from a short (1 hr) test to a 24- and 48-hr tests have been used with provocation varying from normal everyday activities to defined regimens.

Pad Testing

URODYNAMIC INVESTIGATIONS AND ASSOCIATED PELVIC IMAGING

Urodynamics: Functional study of the lower urinary tract. Clinical sequence of testing: Urodynamic investigations generally involve a woman attending with a comfortably full bladder for free (no catheter) uroflowmetry and postvoid residual urine volume (PVR) measurement prior to filling and voiding (with catheter) cystometry.

 $^{^{\}rm xvii}$ More than 20% (young adults) to 33% (over 65 years) have been suggested as excessive. 3

Uroflowmetry

- (i) Ideal conditions for free (or spontaneous—no catheter) uroflowmetry: Ideally, all free uroflowmetry studies should be performed in a completely private uroflowmetry room. Most modern uroflowmeters have a high degree of accuracy (±5%) though regular calibration is important.²²
- (ii) Urine flow: Voluntary urethral passage of urine which may be:(a) Continuous: No interruption to flow.

(b) Intermittent: Flow is interrupted.

- (iii) Flow rate: Volume of urine expelled via the urethra per unit time. It is expressed in ml/sec.^{2,3}
- (iv) *Voided volume (ml)*: Total volume of urine expelled via the urethra.^{2,3}
- (v) Maximum (urine) flow rate (MUFR, ml/sec)-Q_{max}: Maximum measured value of the flow rate^{2,3} correcting for artifacts.³
- (vi) Flow time (sec): The time over which measurable flow actually occurs.^{2,3}
- (vii) Average (urine) flow rate (AUFR, ml/sec)— Q_{ave} : Voided volume divided by the flow time (Fig. 3).^{2,3}
- (viii) *Voiding time (sec)*: This is the total duration of micturition, that is, includes interruptions. When voiding is completed without interruption, voiding time is equal to flow time.^{2,3}
- (ix) *Time to maximum flow (sec)*: This is the elapsed time from the onset of urine flow to maximum urine flow.^{2,3}
- (x) Interpretation of the normality of free uroflowmetry: Because of the strong dependency of urine flow rates on voided volume,²³ they are best referenced to nomograms where the cutoff for abnormally slow (MUFR, AUFR) has been determined and validated,^{22,24,25} as under the 10th centile of the respective Liverpool nomogram.²⁵ References to a specific urine flow rate as the lower limit of normal provided a specific volume has been voided require further validation studies (Fig. 4).²⁶

Postvoid Residual (Urine Volume)

- (i) *Postvoid residual*: Volume of urine left in the bladder at the completion of micturition.^{1,3}
- (ii) Conditions for PVR measurement: PVR reading is erroneously elevated by delayed measurement due to additional renal input (1–14 ml/min) into bladder volume.²⁷

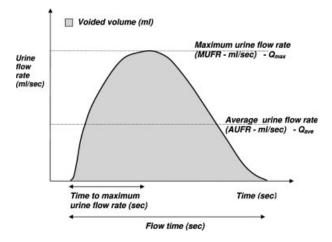


Fig. 3. A schematic representation of urine flow over time.

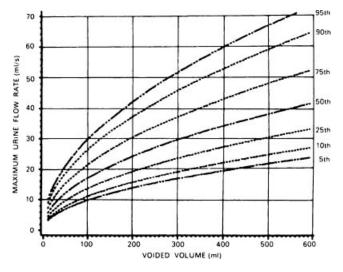
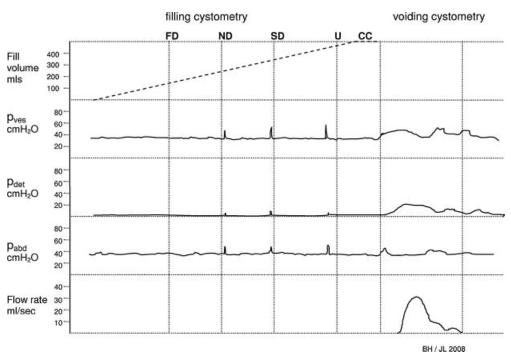


Fig. 4. Liverpool nomogram for maximum urine flow rate in women. Equation: Ln(maximum urine flow rate) = $0.511 + 0.505 \times \text{Ln}(\text{voided volume})$; root mean square error = $0.340^{22.24}$ (reproduced with permission).

Ultrasonic techniques (transvaginal, abdominal, Doppler planimetry) allow immediate (within 60 sec of micturition) measurement.²⁷ A short plastic female catheter provides the most effective bladder drainage for PVR measurement.²⁷

(iii) Assessment of normality of PVR: Quoted upper limits of normal may reflect the accuracy of measurement. Studies using "immediate" PVR measurement (e.g., transvaginal ultrasound) suggest an upper limit of normal of 30 ml.²⁸ Studies using urethral catheterization (up to 10 min delay) quote higher upper limits of normal of 50²⁶ or 100 ml.²⁸ An isolated finding of a raised PVR requires confirmation before being considered significant.

Cystometry-General^{2,3,29}


- (i) *Cystometry*: Measurement of the pressure/volume relationship of the bladder during filling and/or pressure flow study during voiding.^{2,29}
- (ii) Cystometrogram (CMG): Graphical recording of the bladder pressure(s) and volume(s) over time.^{2,29}
- (iii) Urodynamic studies: These usually take place in a special clinical room (urodynamic laboratory) and involve (artificial) bladder filling with a specified liquid at a specified rate.^{3,29}
- (iv) Conditions for cystometry^{2,3,29}:
 - (a) *Pressures*: All systems are zeroed at atmospheric pressure.
 - (b) *External pressure transducers*: Reference point is the superior edge of the pubic symphysis.
 - (c) Catheter mounted transducers: Reference point is the transducer itself.
 - (d) Initial bladder volume: Bladder should be empty.
 - (e) *Fluid medium*: Usually water or saline (or contrast if radiology involved).
 - (f) *Temperature of fluid*: Should ideally be warmed to body temperature.
 - (g) *Position of patient*: Sitting position is more provocative for abnormal detrusor activity than the supine position. At some point in the test, filling might desirably take place with the woman standing.

- 12 Haylen et al.
 - (h) Filling rate: The filling rate, including any changes during testing, should be noted on the urodynamic report.
 - (v) Intravesical pressure (p_{ves}): The pressure within the bladder.¹⁻³
- (vi) Abdominal pressure (p_{abd}) : The pressure surrounding the bladder. It is usually estimated from measuring the rectal pressure, though vaginal and infrequently the pressure though a bowel stoma can be measured as an alternative. The simultaneous measurement of abdominal pressure is essential for interpretation of the intravesical pressure trace^{2,3}. Artifacts on the detrusor pressure trace may be produced by an intrinsic rectal contraction.
- (vii) *Detrusor pressure* (p_{det}): The component of intravesical pressure that is created by forces in the bladder wall (passive and active). It is estimated by subtracting abdominal pressure from intravesical pressure.³
- (viii) *Ambulatory urodynamics*: These investigations are a functional test of the lower urinary tract, performed outside the clinical setting, involving natural filling and reproducing the woman's everyday activities.

Filling Cystometry^{2,3,29}

- (i) *Filling cystometry*: This is the pressure/volume relationship of the bladder during bladder filling.^{1,2} It begins with the commencement of filling and ends when a "permission to void" is given by the urodynamicist.³
- (ii) Aims of filling cystometry: These are to assess bladder sensation, bladder capacity, detrusor activity, and bladder compliance.^{2,3}

- (iii) Bladder sensation during filling cystometry: This is usually assessed by questioning the woman in relation to the fullness of the bladder during cystometry.²
 - (a) *First sensation of bladder filling*: The feeling when the woman first becomes aware of bladder filling.³
 - (b) *First desire to void*²: The first feeling that the woman may wish to pass urine.
 - (c) *Normal desire to void*: The feeling that leads the woman to pass urine at the next convenient moment, but voiding can be delayed if necessary.
 - (d) *Strong desire to void*: The persistent desire to pass urine without the fear of leakage.
 - (e) *Urgency*: Sudden, compelling desire to pass urine which is difficult to defer.^{3 f}
 - (f) Bladder oversensitivity—also referred to as either "increased bladder sensation"³ or "sensory urgency" (2—now obsolete): Increased perceived bladder sensation during bladder filling with: an early first desire to void; an early strong desire to void, which occurs at low bladder volume; a low maximum cystometric bladder capacity (Filling Cystometry Section (iv:b)); no abnormal increases in detrusor pressure.
 - (g) *Reduced bladder sensation*: Bladder sensation is perceived to be diminished during filling cystometry.
 - (h) Absent bladder sensation: The woman reports no bladder sensation during filling cystometry.
 - (i) *Pain*: The complaint of pain during filling cystometry is abnormal. Its site, character, and duration should be noted.
- (iv) Bladder capacity during filling cystometry:
 - (a) *Cystometric capacity*: Bladder volume at the end of filling cystometry, when "permission to void" is

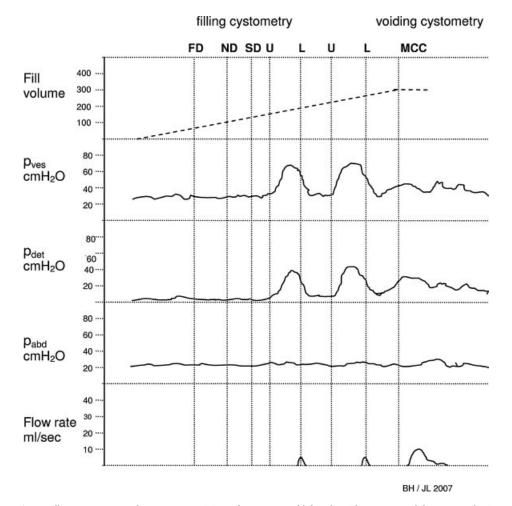


Fig. 5. Filling cystometry—normal detrusor function. Forty-eight-year-old female with urinary frequency. No phasic activity during filling. Voided with normal urine flow rate at normal detrusor voiding pressure. Normal study. FD, First desire to void; ND, Normal desire to void; SD, Strong desire to void; U, Urgency; CC, Cystometric capacity (permission to void given).

- (b) *Maximum cystometric capacity*: In patients with normal sensation, this is the bladder volume when she can no longer delay micturition.
- (v) Detrusor function during filling cystometry:
 - (a) Normal (previously "stable") detrusor function: There is little or no change in detrusor pressure with filling. There are no involuntary phasic contractions despite provocation with activities such as postural changes, coughing, hearing the sound of running water, handwashing.
 - (b) Detrusor overactivity: The occurrence of involuntary detrusor contractions during filling cystometry. These contractions, which may be spontaneous or provoked, produce a wave form on the cystometrogram, of variable duration and amplitude. The contractions may be phasic or terminal. Symptoms, for example, urgency and/or urgency incontinence may or may not occur. If a relevant neurological cause is present, then neurogenic detrusor overactivity is noted, otherwise

idiopathic detrusor overactivity should be the term used (Fig. 6).

- (c) *Neurogenic detrusor overactivity*: This is where there is detrusor overactivity and there is evidence of a relevant neurological disorder.
- (vi) Bladder compliance^{2,3}: This describes the relationship between a change in bladder volume and change in detrusor pressure³. Compliance is calculated by dividing the volume change (ΔV) by the change in detrusor pressure (ΔP_{det}) during that change in bladder volume ($C = \Delta V / \Delta P_{det}$). Compliance is expressed as ml per cmH₂O. Bladder compliance can be affected by:
 - (a) *Bladder filling*: Faster filling is more provocative. An artifact may be produced which settles when filling is interrupted.
 - (b) *Contractile/relaxant properties of the detrusor*: For example, postradiation changes of the detrusor wall.
 - (c) *Starting point for compliance calculations*³: Usually the detrusor pressure at the start of bladder filling and the corresponding bladder volume (usually zero).
 - (d) End point for compliance calculations³: The detrusor pressure (and corresponding bladder volume) at cystometric capacity or immediately before the start

Fig. 6. Filling cystometry—detrusor overactivity. Fifty-two-year-old female with urgency and frequency. Phasic detrusor activity during filling. Leakage is associated with urgency and detrusor contractions. FD, First desire to void; ND, Normal desire to void; SD, Strong desire to void; U, Urgency; L, Leakage; MCC, Maximum cystometric capacity.

of any detrusor contraction that causes significant leakage (and therefore causes the bladder volume to decrease, affecting compliance calculations). Both points are measured excluding any detrusor contraction.

Urethral Function During Filling Cystometry (Filling Urethro-Cystometry)

- (i) Urethral pressure measurement^{2,3,29}: Urethral pressure and urethral closure pressure are idealized concepts which represent the ability of the urethra to prevent leakage. Urethral pressure is currently measured by a number of different techniques which do not tend to have consistent results, either between methods or for a single method.³⁰ For example, the effect of catheter rotation will be relevant when urethral pressure is measured by a cathetermounted transducer. Urethral pressure might, nonetheless, be measured:
 - At rest, with the bladder at a given volume.
 - During coughing or straining.
 - During the process of voiding.
 - (a) *Urethral pressure (*intraluminal): This is the fluid pressure needed to just open a closed urethra.
 - (b) Urethral pressure profile (UPP): This is a graph indicating the intraluminal pressure along the length of the urethra.
 - Resting UPP: The bladder and subject are at rest.
 - Stress UPP: Defined applied stress (e.g., cough, strain, Valsalva).

All systems are zeroed at atmospheric pressure. For external transducers, the reference point is the superior edge of the symphysis pubis. For catheter-mounted transducers, the reference point is the transducer itself. Intravesical pressure should be measured to exclude a simultaneous detrusor contraction. Methodology should be noted² including: patient position; catheter type; transducer orientation; fluid and rate of infusion (if fluid-filling system); bladder volume; rate of catheter withdrawal.

- (c) *Maximum urethral pressure (MUP)*: Maximum pressure in the UPP.
- (d) *Urethral closure pressure profile (UCPP)*: The relevant pressure is the urethral closure pressure (urethral pressure minus the intravesical pressure).
- (e) *Maximum urethral closure pressure (MUCP)*: Maximum pressure in the UCPP, that is, the maximum difference between the urethral pressure and the intravesical pressure.
- (f) Functional profile length: The length of the urethra along which the urethral pressure exceeds intravesical pressure in a woman.
- (g) *Functional profile length (on stress)*: The length over which the urethral pressure exceeds the intravesical pressure on stress.
- (h) Pressure "transmission" ratio: This is the increment in urethral pressure on stress as a percentage of the simultaneously recorded increment in intravesical pressure. For stress profiles obtained during coughing, pressure transmission ratios can be obtained at any point along the urethra. If single values are given, the position in the urethra should be stated. If several transmission ratios are defined at different points along the urethra, a pressure transmission "profile" is

obtained. During "cough profiles," the amplitude of the cough should be stated if possible.

- (ii) Urethral closure mechanism³:
 - (a) *Normal urethral closure mechanism*: A positive urethral closure pressure is maintained during bladder filling, even in the presence of increased abdominal pressure, although it may be overcome by detrusor overactivity.
 - (b) *Incompetent urethral closure mechanism*: Leakage of urine occurs during activities which might raise intraabdominal pressure in the absence of a detrusor contraction.
 - (c) Urethral relaxation incompetence ("urethral instability"): Leakage due to urethral relaxation in the absence of raised abdominal pressure or a detrusor contraction.
 - (d) *Urodynamic stress incontinence*: This is the involuntary leakage of urine during filling cystometry, associated with increased intra-abdominal pressure, in the absence of a detrusor contraction.
- (iii) Leak point pressures^{2,31,32}: There are two types of leak point pressure measurement. The pressure values at leakage should be measured at the moment of leakage.
 - (a) Detrusor leak point pressure (detrusor LPP): This a static test. The pressure is the lowest value of the detrusor pressure at which leakage is observed in the absence of increased abdominal pressure or a detrusor contraction. High detrusor LPP (e.g., over 40 cmH₂O³¹) may put patients at risk for upper urinary tract deterioration, or secondary damage to the bladder in the cases of known underlying neurological disorders such as paraplegia or MS. There are no data on any correlation between detrusor LPP and upper tract damage in nonneurogenic patients.
 - (b) Abdominal leak point pressure (abdominal LPP): This is a dynamic test. It is the lowest value of the intentionally increased intravesical pressure that provokes urinary leakage in the absence of a detrusor contraction.³² The increase in pressure can be induced by a cough (cough LPP) or Valsalva (Valsalva LPP). Multiple estimates at a fixed bladder volume (200–300 ml) are desirable. Catheter size will influence LPP values and should be standardized. LPP values might also be affected by many other factors such as the technique to confirm urine loss, location of catheter, type of pressure sensor, bladder volume, rate of bladder filling, and patient position. A low abdominal LPP is suggestive of poor urethral function.^{xviii}

Voiding Cystometry (Pressure Flow Studies)

- (i) *Voiding cystometry*: This is the pressure volume relationship of the bladder during micturition.¹ It begins when the "permission to void" is given by the urodynamicist and ends when the woman considers her voiding has finished.³ Measurements to be recorded should be the intravesical, intra-abdominal, and detrusor pressures and the urine flow rate.
- (ii) Measurements during voiding cystometry^{2,3,29}:
 - (a) *Premicturition pressure*: The pressure recorded immediately before the initial isovolumetric contraction.
 - (b) *Opening time*: The time elapsed from initial rise in pressure to the onset of flow. This is the initial isovolumetric contraction period of micturition. It re-

 $^{^{\}rm xviii}{\rm The}$ correlation between MUCP and abdominal LPP may depend on the catheter type used.

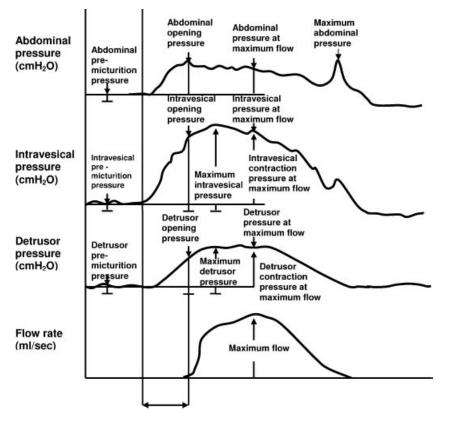


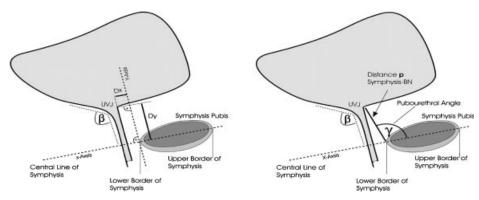
Fig. 7. A schematic diagram of voiding cystometry.

flects the time taken for the fluid to pass from the point of pressure measurement to the uroflow transducer. Flow measurement delay should be taken into account when measuring the opening time.

- (c) *Opening pressure*: The pressure recorded at the onset of measured flow (consider time delay).
- (d) Maximum pressure: Maximum value of the measured pressure.
- (e) *Pressure at maximum flow*: Pressure recorded at maximum measured flow rate.
- (f) *Closing pressure*: Pressure recorded at the end of measured flow.
- (g) Contraction pressure at maximum flow: This is the difference between pressure at maximum flow and the premicturition pressure.
- (h) Flow delay: This is the delay in time between a change in pressure and the corresponding change in measured flow rate.

Figure 7 shows a schematic diagram of voiding cystometry.

- (iii) Detrusor function during voiding^{2,3}:
 - (a) Normal detrusor function: Normal voiding in women is achieved by an initial (voluntary) reduction in intraurethral pressure (urethral relaxation).³³ This is generally followed by a continuous detrusor contraction that leads to complete bladder emptying within a normal time span. Many women will void successfully (normal flow rate and no PVR) by urethral relaxation alone, without much of a rise in detrusor pressure.³⁴ The amplitude of the detrusor contraction will tend to increase to cope with any degree of bladder outflow obstruction.³⁵


- (b) *Detrusor underactivity*: Detrusor contraction of reduced strength and/or duration, resulting in prolonged bladder emptying and/or a failure to achieve complete bladder emptying within a normal time span.
- (c) Acontractile detrusor: The detrusor cannot be observed to contract during urodynamic studies resulting in prolonged bladder emptying and/or a failure to achieve complete bladder emptying within a normal time span. The term "areflexia" has been used where there is a neurological cause but should be replaced by neurogenic acontractile detrusor.

Urethral Function During Voiding Cystometry (Voiding Urethro-Cystometry^{2,3,29})

This technique may assist in determining the nature of urethral obstruction to voiding. Pressure is recorded in the urethra during voiding. This may be at one specific point, for example, high-pressure zone or it may be measured as a profile. A voiding urethral pressure profile (VUPP) uses a similar technique to that described above for the UPP measured during bladder filling. Simultaneous intravesical pressure measurement is required. Localization of the site of the intraurethral pressure measurement is desirable.

(i) Normal urethral function: The urethra opens and is continuously relaxed to allow micturition at a normal pressure, urine flow, and PVR.^{xix}

xirsSymptomatic women with normal detrusor function do not have to rely as much on an increase in detrusor pressure to achieve successful voiding as men. With a shorter urethra (3–4 cm vs. 20 cm), urethral relaxation might suffice. The concept of urethral relaxation, prior to detrusor contraction, is a change from prior definitions.^{2,3}

Fig. 8. Ultrasound parameters: according to the recommendations of the German-speaking countries. γ (gamma), angle between the inferior edge of the symphysis and the urethrovesical junction (UVJ); h, distance between the UVJ and the horizontal; p, distance between the inferior edge of the symphysis and the UVJ; x and y, distance between the UVJ and the x- and y-axis; X, axis of the symphysis, with 0 at its lower edge; Y, axis perpendicular to that of the symphysis.³⁶

- (ii) Bladder outflow obstruction: This is the generic term for obstruction during voiding. It is a reduced urine flow rate and/or presence of a raised PVR and an increased detrusor pressure.^{xx} It is usually diagnosed by studying the synchronous values of urine flow rate and detrusor pressure and any PVR measurements. A urethral stricture or obstruction due to higher degrees of uterovaginal prolapse or obstructed voiding after stress incontinence procedures are among possible causes.
- (iii) Dysfunctional voiding: This is characterized by an intermittent and/or fluctuating flow rate due to involuntary intermittent contractions of the peri-urethral striated or levator muscles during voiding in neurologically normal women. This type of voiding may also be the result of an acontractile detrusor (abdominal voiding) with electromyography (EMG) or video-urodynamics required to distinguish between the two entities.
- (iv) Detrusor sphincter dyssynergia (DSD): This is incoordination between detrusor and sphincter during voiding due to a neurological abnormality (i.e., detrusor contraction synchronous with contraction of the urethral and/or periurethral striated muscles). This is a feature of neurological voiding disorders. Neurological features should be sought. Videocystourethrography (VCU-Radiological Imaging Section (i:a)) is generally valuable to conclude this diagnosis.

Ultrasound Imaging³⁶

- (i) Ultrasound in urogynecology: Ultrasound has become an increasingly frequent adjunct investigation in urogynecology and female urology both in the office and in the urodynamic laboratory.
- (ii) Modalities in current routine clinical use:
 - (a) Perineal: Curved array probe applied to the perineum. This term incorporates transperineal and translabial ultrasound.
 - (b) Introital: Sector probe applied to the vaginal introitus.
 - (c) *Transvaginal (T-V*): Intravaginal curvilinear, linear array, or sector scanning.
 - (d) *Transabdominal (T-A)*: Curvilinear scanning applied to the abdomen.

^{xx}In symptomatic women, detrusor voiding pressure, urine flow (rate), and PVR are important markers of bladder outflow obstruction. In the original definition, only detrusor pressure and urine flow rate were included.

- (iii) Current routine possible uses of ultrasound in urogynecology and female urology:
 - (a) Bladder neck descent/mobility/opening:
 - Position of bladder neck at rest and on Valsalva.^{xxi}

N.B.: Ideally the Valsalva should be standardized but it is appreciated that at present a reliable non-invasive method is lacking. Consensus has not been reached on criteria for excessive bladder neck mobility nor the relationship of this finding to a diagnosis of urodynamic stress incontinence.³⁷

- Position of bladder neck during pelvic floor contraction.
- Retrovesical angle (RVA): That is, angle between proximal urethra and trigonal surface of the bladder.
- *Urethral rotation*: That is, rotation of the proximal urethra on Valsalva.^{xxii}
- Angle gamma: That is, angle defined by lines from the infero-posterior symphyseal margin to the bladder neck at rest and on Valsalva.^{xxi}
- Urethral funneling: That is, opening of the proximal third of the urethra during coughing or on Valsalva.^v
- Urine loss: Full urethral opening during coughing, Valsalva, ^{xxi} bladder contraction, or micturition.

Figure 8 demonstrates schematically some of the ultrasound parameters.

- (b) *Postvoid residuals*: See the Postvoid Residual (Urine Volume) Section.
- (c) *Intercurrent pelvic pathology*: For example, uterine and adnexal pathology.
- (d) *Uterine version*: Anteverted or retroverted; flexion at level of isthmus.³⁸ xxii
- (e) *Bladder abnormalities*: For example, tumor, foreign body.
- (f) Urethral abnormality: For example, diverticulum.

^{xxi}In scientific studies, consideration should be given to standardization of the Valsalva strength, for example, by using an intrarectal pressure transducer.
^{xxii}The use of transvaginal ultrasound with an empty bladder optimizes this assessment.³⁹

- (g) Postoperative findings: For example, bladder neck position and mobility, position of meshes, tapes, or implants.
- (h) *Pelvic floor/levator defects*: Bladder neck elevation during pelvic floor contraction.
- (i) *Descent of pelvic organs*: Visualization of descent of the bladder, uterine cervix, and rectum during Valsalva and coughing.
- (iv) 3D and 4D ultrasound: The potential of 3D ultrasound in urogynecology and female urology is currently being researched with validated applications likely to be included in future updates of this report and/or separate ultrasound reports. Applications with the most current research include: (i) major morphological abnormalities such as levator defects³⁹ and (ii) excessive distensibility of the puborectalis muscle and levator hiatus ("ballooning"⁴⁰). The additional diagnostic potential of 4D (i.e., the addition of movement) ultrasound awaits clarification by further research.
- (v) *Other assessments*: Synchronous ultrasound screening of the bladder and/or urethra and measurement of the bladder and abdominal pressure during filling and voiding cystometry.
- (vi) Anal ultrasound (endosonography)⁴¹: This is the goldstandard investigation in the assessment of anal sphincter integrity. There is a high incidence of defecatory symptoms in women with anal sphincter defects.

Radiological Imaging

(i) Modalities in current routine clinical use:

- (a) Videocystourethrography (VCU)⁴²: Synchronous radiological screening of the bladder and measurement of the bladder and abdominal pressure during filling and voiding cystometry. When indicated for complex cases, VCU allows direct observation of the effects of bladder events, the position and conformation of the bladder neck in relation to the pubic symphysis, bladder neck closure during rest and stress, diverticula of the bladder and urethra, vesico-vaginal and urethro-vaginal fistulae, vesico-ureteric reflux and voiding events.
- (ii) Other modalities: None of these are office or urodynamic laboratory based.
 - (a) *Intravenous urography (IVU)*⁴²: This provides an anatomical outline of the urinary tract including a nephrogram prior to passage of the contrast to the calyces, renal pelvis, ureter, and bladder.
 - (b) *Micturating cystogram (MCU)*⁴³: The principal use is the detection of vesico-ureteric reflux, some fistulae and diverticula.
 - (c) Defecography⁴¹: This demonstrates normal anatomy of the anorectum as well as disorders of rectal evacuation. Barium paste is inserted rectally prior to defecation over a translucent commode. Measurement of the anorectal angle is allowed with evidence of the presence, size, or emptying of any rectocele. Enteroceles, rectal intussusception, and mucosal prolapse might be diagnosed as well as a spastic pelvic floor (anismus).
 - (d) Colporecto-cystourethrography:(Colpo-cystodefecography)⁴²: This involves the instillation of radio-opaque media into bladder, vagina, and rectum simultaneously for pelvic floor evaluation with images obtained during rest and straining.

Neurourology and Urodynamics DOI 10.1002/nau

Magnetic Resonance Imaging^{45,46}

(i) MRI in urogynecology and female urology:

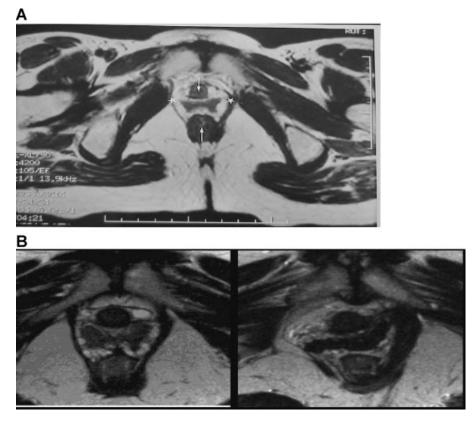
MRI provides the opportunity to examine the soft tissue structures of the pelvic support apparatus in toto. It is non-invasive, has excellent soft tissue contrast resolution without exposure to ionizing radiation, and allows the study of function of pelvic floor structures under different dynamic conditions such as increased abdominal pressure during Valsalva.^{44,45} Several anatomical landmarks used for pelvic measurements are also easily identified in MRI and most measurements are thus highly reproducible. Currently, the clinical value of these examinations is still under investigation with its impact on therapeutic decisions not yet fully evaluated.

- (ii) Current possible measurements using MRI in urogynecology and female urology^{44,45}:
 - (a) Bladder neck and cervical descent/mobility:
 - Position of bladder neck and cervix at rest and on Valsalva.
 - Pubo-coccygeal line: A line extending from the inferior border of the pubic symphysis to the last joint of the coccyx. Bladder neck or cervical descent >2 cm below this line with straining indicates weakness of the pelvic floor. If alternative landmarks are used in scientific papers they should be clearly described.

Figure 9A shows a number of possible measurements using MRI imaging.

- (b) *Intercurrent pelvic pathology*: For example, fibroids, ovarian pathology.
- (c) *Uterine version*: Anteverted or retroverted; flexion at the isthmus.⁴⁷
- (d) *Bladder abnormalities*: For example, tumor; foreign body.
- (e) Urethral abnormality: For example, diverticulum.
- (f) *Postoperative findings*: For example, bladder neck mobility.
- (g) *Pelvic floor measurements/levator defects*: Assessment of the configuration of pelvic floor muscles, in particular, the levator ani.
- (h) Descent of pelvic organs:

N.B.: Diagnostic ability may be enhanced by the use of 3D MRI. New techniques with high-speed sequence of pictures allow a functional MRI.


DIAGNOSES (MOST COMMON)

This report^{xxiii} again^{2,3} highlights the need to base diagnoses for female pelvic floor dysfunction on the correlation between a woman's symptoms, signs, and any relevant diagnostic investigations.

Urodynamic Stress Incontinence

Definition: As noted in the Urethral Function During Filling Cystometry Section (ii:d), this diagnosis by symptom,

 $^{^{\}rm xxiii}$ The most common diagnoses are those where there is evidence for a prevalence of 10% or more in women presenting with symptoms of pelvic floor dysfunction.

Fig. 9. A: Axial T2-weighted image of the pelvic floor of a healthy nulliparous Caucasian woman showing measurement of the antero-posterior diameter of the genital hiatus between the *arrows* from mid-urethra to midanus at the level of the lower border of the pubic symphysis. Transverse diameter (width) of the levator hiatus was measured between the *stars* at the point of maximum extension of the levator muscles at the level of the urinary bladder and proximal urethra. Reproduced from Am J Obstet Gynecol with the permission from the Publisher.⁴⁶ **B**: An example of a unilateral levator defect of the pubococcygeus muscle (right image) seen on MRI imaging (reproduced with kind permission from Mr. Olubenga Adekanmi; Image reviewed by Prof. John DeLancey).

sign, and urodynamic investigations involves the finding of involuntary leakage during filling cystometry, associated with increased intra-abdominal pressure, in the absence of a detrusor contraction.^{xxiv}

Detrusor Overactivity

Definition: As noted in the Filling Cystometry Section (v:b), this diagnosis by symptoms and urodynamic investigations is made in women with lower urinary tract symptoms (more commonly OAB-type symptoms—the Bladder Storage Symptoms Section (iv)) when involuntary detrusor muscle contractions occur during filling cystometry.^{xxv}

Bladder Oversensitivity

Definition: Bladder oversensitivity, a diagnosis made by symptoms and urodynamic investigations, is more likely to occur in women with symptoms of frequency and nocturia, and a voiding diary showing a clearly reduced average voided

^{xxv}The prevalence of detrusor overactivity can vary widely between 13%⁴⁸ and 40%⁴⁹ of patients undergoing urodynamic studies at different centers.

Neurourology and Urodynamics DOI 10.1002/nau

volume. Also referred to as "increased bladder sensation,"³ bladder oversensitivity replaces the now obsolete term of "sensory urgency."^{50,51} As noted in the Filling Cystometry Section (iii:f), it can be defined as an increased perceived bladder sensation during bladder filling (Sensory Symptoms Section (i)) with specific cystometric findings of: (i) an early first desire to void (Filling Cystometry (iii:b)); (ii) an early strong desire to void, which occurs at low bladder volume (Filling Cystometry (iii:d)); (iii) a low maximum cystometric bladder capacity (Filling Cystometry (iv:b)); no abnormal increases in detrusor pressure.^{51,52} Specific bladder volumes at which these findings occur will vary in different populations. There should be no known or suspected UTI.^{xxvi}

Voiding Dysfunction

(i) Definition: Voiding dysfunction, a diagnosis by symptoms and urodynamic investigations, is defined as abnormally slow and/or incomplete micturition.⁵³ Abnormal slow urine flow rates and abnormally high postvoid residuals, the basis of this diagnosis, are outlined in the Uroflow-

^{xciv}This is the most common urogynecological diagnosis, occurring in up to 72% patients presenting for the first time.⁴⁹ This diagnosis may be made in the absence of the symptom of stress (urinary) incontinence in women who have the sign of occult or latent stress incontinence.

 $^{^{}xxvi}$ The prevalence of the oversensitive bladder in urogynecology and female urology patients (from studies on the now obsolete term "sensory urgency") is around 10–13%. 51,52

metry Section (x) and Postvoid Residual Section (iii). This diagnosis should be based on a repeated measurement to confirm abnormality.^{xxvvii}

- (ii) Further evaluation—pressure/flow studies (voiding cystometry). Pressure: flow studies are indicated to evaluate the cause of any voiding dysfunction. Some possible causes have been already defined: Voiding Cystometry Section (iii:b)detrusor underactivity and (iii:c) acontractile detrusor; Urethral Function During Voiding Cystometry Section (ii) bladder outflow obstruction.
- (iii) Alternative presentations:
 - (a) Acute retention of urine³: This is defined as a generally (but not always) painful, palpable, or percussable bladder, when the patient is unable to pass any urine when the bladder is full.
 - (b) *Chronic retention of urine*: This is defined as a nonpainful bladder, where there is a chronic high PVR. ^{xxviii}

Pelvic Organ Prolapse

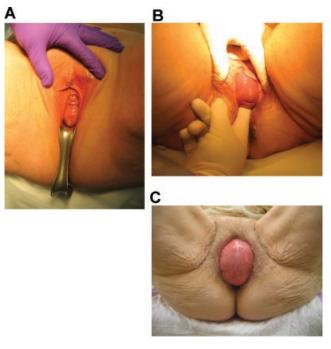
Definition: This diagnosis (Signs of pelvic organ prolapse (i)) by *symptoms and clinical examination, assisted by any relevant imaging,* involves the identification of descent of one or more of the anterior vaginal wall (central, paravaginal, or combination cystocele), posterior vaginal wall (rectocele), the uterus (cervix), or the apex of the vagina (vaginal vault or cuff scar) after hysterectomy.^{xxix} The presence of any such sign should correlate with relevant POP symptoms.

Figure 10 demonstrates different types and stages of clinical presentations of prolapse. Figure 10A does not distinguish cystocele type.

Recurrent Urinary Tract Infections

Definition: This diagnosis by clinical history assisted by the results of diagnostic tests involves the determination of the occurrence of at least three symptomatic and medically diagnosed UTIs over the previous 12 months.^{xxx}

ACKNOWLEDGMENTS/ADDENDUM


No discussion on terminology should fail to acknowledge the fine leadership shown by the ICS over many years. The legacy of that work by many dedicated clinicians and scientists is present in all the reports by the different Standardization Committees. It is pleasing that the ICS leadership has accepted this joint IUGA/ICS initiative as a means of progress in this important and most basic area.

This document has involved 12 rounds of full review, by coauthors, of an initial draft, with the collation of comments

^{xxviii}Approximately 2% of postvoid residual measurements are over 200 ml.²⁸ This is a suggested cut off.

Neurourology and Urodynamics DOI 10.1002/nau

Fig. 10. Different types and stages of pelvic organ prolapse. **A**: Stage II anterior vaginal wall prolapse; (**B**) stage III uterine prolapse; and (**C**) stage IV vaginal vault prolapse.

(and figures-Version 14). Following web site publication, there have been a further two rounds to review the comments made. Versions 7, 9, 11, and 17 were subject to live Meetings in London (June 2008), Taipei (September 2008), Cairo (October 2008), Lake Como, Italy (June 2009) and San Francisco (September 2009). The co-authors acknowledge the input to an early version of the document by Professor Don Wilson and Dr. Jenny King. Versions 9, 10, and 12 were subject to external review. The extensive comments by those reviewers, Professor Gunnar Lose (Version 9), Dr. Søren Brostrøm (Version 10), Mr. Philip Toozs-Hobson (Version 10), Mr. Ralph Webb, Dr. Kristene Whitmore, and Professor Cor Baeten (Version 12) are also gratefully acknowledged. The comments by the following reviewers in response to web site publication (December 2008 to January 2009) are also much appreciated: Dr. Kiran Ashok, Dr. Rufus Cartwright, Dr. Johannes Coetzee, Professor Peter Dietz, Dr. Howard Goldman, Mr. Sharif Ismail, Mrs. Jane Meijlink, Professor. Don Ostergard. Version 16 was subject to a further invited external review by Professor Ted Arnold, Professor Jacques Corcos, Dr. Harry Vervest, and Professor Jean-Jacques Wyndaele, and the consideration of comments by Professor Paul Abrams and Professor Werner Schaefer. Version 17 will be for web site and dual journal publication.

^{xxvii}Depending on definition, voiding dysfunction has a prevalence of 14%⁵⁴ to 39%,⁴⁸ the latter figure making it either the third or fourth most common urodynamic diagnosis (after urodynamic stress incontinence, pelvic organ prolapse, and possibly detrusor overactivity).

^{xxis}Around 61%⁴⁸ of women presenting for initial urogynecological assessment will have some degree of prolapse, not always symptomatic. Objective findings of prolapse in the absence of relevant prolapse symptoms may be termed "anatomic prolapse." Approximately half of all women over the age of 50 years have been reported to complain of symptomatic prolapse.⁵⁵ There is a 10% lifetime incidence for women of undergoing surgery to correct pelvic organ prolapse.⁵⁵

^{\dot{x}} we show that the second sec

REFERENCES

- Stedman's Medical Dictionary. Baltimore, USA: Lippincott, Williams and Wilkins; 2006.
- Abrams P, Blaivas JG, Stanton SL, et al. The standardisation of terminology of lower urinary tract function. Scand J Urol Nephrol Suppl 1988;114:5–19.
- Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function. Report from the standardisation subcommittee of the International Continence Society. Neurourol Urodyn 2002;21:167–78.
- Haylen BT, Chetty N. International Continence Society 2002 Terminology Report. Have urogynecological diagnoses been overlooked? Int Urogynecol J 2007;18:373-7.
- Weber AM, Abrams P, Brubaker L, et al. The standardization of terminology for researchers in female pelvic floor disorders. Int Urogynecol J 2001;12: 178–86.
- Blaivas JG, Appell RA, Fantl JA, et al. Definition and classification of urinary incontinence: Recommendations of the Urodynamic Society. Neurourol Urodyn 1997;16:149–51.
- Fitzgerald MP. Variability of 24-hour voiding diary variables amongst asymptomatic women. J Urol 2003;169:207–9.
- Cardozo LD. Urinary frequency and urgency. In: Stanton SL, Monga AK, editors. Clinical urogynaecology. London: Churchill Livingstone; 2000. pp 309–19.
- Basson R, Berman J, Burnett A, et al. Report of the international consensus development conference on female sexual dysfunction: Definitions and classifications. J Urol 2000;163:888–93.
- Rogers GR, Villarreal A, Kammerer-Doak D, et al. Sexual function in women with/without urinary incontinence and or pelvic organ prolapse. Int Urogynecol J 2001;12:361–5.
- Norton C, Christansen J, Butler U, et al. Anal incontinence. In: Abrams P, Khoury CL, Wein A, editors. Incontinence, 2nd ed. Plymouth: Health Publications Ltd; 2002. p 985–1044.
- Drossman DA. The functional gastrointestinal disorders and the Roma II process. Gut 1999;45:1–6.
- Labat JJ, Riant T, Robert R, et al. Diagnostic criteria for pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). Neurourol Urodyn 2008;27: 306–10.
- Yang A, Mostwin J, Genadry R, et al. Patterns of prolapse demonstrated with dynamic fastscan MRI; reassessment of conventional concepts of pelvic floor weaknesses. Neurourol Urodyn 1993;12:310–1.
- Bump RC, Mattiasson A, Bo K, et al. The standardization of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol 1996;175: 10-11.
- Swift SE, Woodman P, O'Boyle A, et al. Pelvic Organ Support Study (POSST): The distribution, clinical definition and epidemiology of pelvic organ support defects. Am J Obstet Gynecol 2005;192:795–806.
- Swift SE, Tate SB, Nichols J. Correlation of symptomatology with degree of pelvic organ support in a general population of women: What is pelvic organ prolapse? Am J Obstet Gynecol 2003;189:372–9.
- Ricci IV. One hundred years of gynaecology, Chapter 15. Philadelphia: The Blakiston Company; 1945. p 308–25.
- Messelink B, Benson T, Berghmans B, et al. Standardization of terminology of pelvic floor muscle function and dysfunction: Report from the Pelvic Floor Clinical Assessment Group of the International Continence Society. Neurourol Urodyn 2005;24:374–80.
- Dietz HP, Shek KL. Validity and reproducibility of the digital detection of levator trauma. Int Urogynecol J 2008;19:1097–101.
- Van Kerrebroeck P, Abrams P, Chaikin D, et al. The standardisation of terminology of nocturia: Report from the Standardization Subcommittee of the International Continence Society. Neurourol Urodyn 2002;21:179–83.
- Haylen BT, Yang V, Logan V. Uroflowmetry: Its current clinical utility in women. Int Urogynecol J 2008;19:899–903.
- Fantl JA, Smith PJ, Schneider V, et al. Fluid weight uroflowmetry in women. Am J Obstet Gynecol 1982;145:1017–24.
- Haylen BT, Ashby D, Sutherst JR, et al. Maximum and average urine flow rates in normal male and female populations—The Liverpool Nomograms. Br J Urol 1989;64:30–8.
- Haylen BT, Parys BT, Ashby D, et al. Urine flow rates in male and female urodynamic patients compared with the Liverpool nomograms. Br J Urol 1990;65:483-8.
- Costantini E, Mearini E, Pajoncini C, et al. Uroflowmetry in female voiding disturbances. Neurourol Urodyn 2003;22:569–73.
- Haylen BT, Lee J. The accuracy of measurement of the post-void residual in women (Editorial). Int Urogynecol J 2008;19:603–6.
- Haylen BT, Lee J, Logan V, et al. Immediate postvoid residuals in women with symptoms of pelvic floor dysfunction: Prevalences and associations. Obstet Gynecol 2008;111:1305–12.

- Schafer W, Abrams P, Liao L, et al. Good urodynamic practices: Uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol Urodyn 2002;21: 261–74.
- Lose G, Griffith D, Hosker D, et al. Standardization of urethral pressure measurement: Report from the Standardization Sub-Committee of the International Continence Society. Neurourol Urodyn 2002;21:258–60.
- McGuire EJ, Cespedes RD, O'Connell HE. Leak-point pressures. Urol Clin North Am 1996;23:253–62.
- Stöhrer M, Goepel M, Kondo A, et al. The standardization of terminology in neurogenic lower urinary tract dysfunction. Neurourol Urodyn 1999;18: 139–58.
- 33. Morrison JFB, Torrens MJ. Neurophysiology. In: Stanton SL, Monga AK,
- editors. Clinical urogynaecology. London: Churchill Livingstone; 2000. p 20. 34. Tanagho EA, Miller ER. The initiation of voiding. Br J Urol 1970;42: 175–83.
- Groutz A, Blaivas JG, Chaikin DC. Bladder outflow obstruction in women: Definition and characteristics. Neurourol Urodyn 2000;19:213–20.
- Tunn R, Schaer G, Peschers U, et al. Updated recommendations on ultrasonography in urogynecology. Int Urogynecol J 2005;16:236–41.
 Lewicky-Gaupp C, Blaivas J, Clark A, et al. "The cough game": Are there
- Lewicky-Gaupp C, Blaivas J, Clark A, et al. "The cough game": Are there characteristic urethrovesical movement patterns associated with stress incontinence. Int Urogynecol J 2009;20:171–5.
- Haylen BT, McNally G, Ramsay P, et al. A standardised ultrasonic diagnosis and an accurate prevalence for the retroverted uterus in general gynaecology patients. Aust J Obst Gynaecol 2007;47:326–8.
- Dietz HP. Quantification of major morphological abnormalities of the levator ani. Ultrasound Obstet Gynecol 2007;29:329–34.
- Dietz HP, De Leon J, Shek K. Ballooning of the levator hiatus. Ultrasound Obstet Gynecol 2008;31:676–80.
- Henry MM, Sultan AH. Lower intestinal tract disease. In: Stanton SL, Monga AK, editors. Clinical urogynaecology, Chapter 38. London: Churchill Livingstone; 2000. p 444–5.
- Monga AK, Stanton SL. Radiology and MRI. In: Stanton SL, Monga AK, editors. Clinical urogynaecology, Chapter 10. London: Churchill Livingstone; 2000. p 103-16.
- Woodhouse CRJ. General urological investigations. In: Stanton SL, Monga AK, editors. Clinical urogynaecology, Chapter 8. London: Churchill Livingstone; 2000. p 88–90.
- Fielding JR. Practical MRI imaging of female pelvic floor weakness. Radio-Graphics 2002;22:295–304.
- Torricelli P, Pecchi A, Caruso-Lombardi A, et al. Magnetic resonance imaging in evaluating functional disorders of female pelvic floor. Radiol Med 2002;103:488–500.
- Rizk DE, Czechowski J, Ekelund L. Dynamic assessment of pelvic floor and bony pelvis morphologic condition with the use of magnetic resonance imaging in a multi-ethnic, nulliparous, and healthy female population. Am J Obstet Gynecol 2004;191:83–9.
- Rizk DEE, Czechowski J, Ekelund L. Magnetic resonance imaging of uterine version in a multi-ethnic, nulliparous, healthy female population. J Reprod Med 2005;50:81–3.
- Haylen BT, Verity L, Schulz S, et al. Has the true incidence of voiding difficulty in urogynecology patients been underestimated? Int Urogynecol J 2007; 18:53–6.
- Wise B. Frequency/urgency syndromes. In: Cardozo LD, Staskin D, editors. Textbook of female urology and urogynaecology. London: Isis Medical Media; 2001. p 903.
- Creighton SM, Dixon J. Bladder hypersensitivity. In: Stanton SL, Monga AK, editors. Clinical Urogynaecology. London: Churchill Livingstone; 2000. p 321–7.
- Haylen BT, Chetty N, Logan V, et al. Is sensory urgency part of the same spectrum of bladder dysfunction as detrusor overactivity? Int Urogynecol J 2007;18:123–8.
- Wise B. Frequency/urgency syndromes (sensory urgency section). In: Cardozo LD, Staskin D, editors. Textbook of female urology and urogynaecology. London: Isis Medical Media; 2001. p 912.
- Sutherst JR, Frazer MI, Richmond DH, et al. Introduction to clinical gynaecological urology. London: Butterworths; 1990. p 121.
- Massey JA, Abrams PH. Obstructed voiding in the female. Br J Urol 1988; 61:36–9.
- Swift SE. The distribution of pelvic organ support in a population of female subjects seen for routine gynaecologic health care. Am J Obstet Gynecol 2000;183:277–85.
- Brown JS, Waetjen LE, Subak LL, et al. Pelvic organ prolapse surgery in United States. Am J Obstet Gynecol 1997;186:712–6.
- Haylen BT, Lee J, Husselbee S, et al. Recurrent urinary tract infections in women with symptoms of pelvic floor dysfunction. Int Urogynecol J 2009; 20:837–42.