Measurement of Post-Void Residual Urine

Anastasios D. Asimakopoulos,¹ Cosimo De Nunzio,² Ervin Kocjancic,³ Andrea Tubaro,² Peter F. Rosier,⁴ and Enrico Finazzi-Agrò^{5*}

¹UOC of Urology, Department of Surgery, University of Tor Vergata, Policlinico Casilino, Rome, Italy ²Department of Urology, Sant'Andrea Hospital, Faculty of Health Sciences "La Sapienza" University of Rome, Rome, Italy ³Director division of Pelvic Health and Reconstructive Urology, Department of Urology, University of Illinois at Chicago, Chicago, Illinois

⁴University Medical Centre Utrecht, Department of Urology, Utrecht, The Netherlands ⁵Unit for Functional Urology, Policlinico Tor Vergata, Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy

Aims: To present the teaching module "Measurement of Post-void residual urine." **Methods:** This module has been prepared by a Working Group of the ICS Urodynamics Committee. The methodology used included comprehensive literature review, consensus formation by the members of the Working Group, and review by members of the ICS Urodynamics Committee core panel. **Results:** In this ICS teaching module the evidence for and relevance of PVR measurement in patients with lower urinary tract dysfunction (LUTD) is summarized; in short: The interval between voiding and post-void residual (PVR) measurement should be of short duration and ultrasound bladder volume measurement is preferred to urethral catheterization. There is no universally accepted definition of a significant residual urine volume. Large PVR (>200-300 ml) may indicate marked bladder dysfunction (BOO) is undertaken. PVR does not seem to be a strong predictor of acute urinary retention and does not indicate presence of BOO specifically. Although the evidence base is limited, guidelines on assessment of LUTS generally include PVR measurement. **Conclusion:** Measurement of PVR is recommended in guidelines and recommendations on the management of LUTS and urinary incontinence, but the level of evidence for this measurement is not high. This manuscript summarizes the evidence and provides practice recommendations for teaching purposes in the framework of an ICS teaching module. *Neurourol. Urodynam. 35:55–57, 2016.* © 2014 Wiley Periodicals, Inc.

Key words: bladder outlet obstruction; measurement; post-void residual urine; urinary incontinence; urinary tract infections; urodynamics

INTRODUCTION

The incomplete evacuation of the bladder leads to post-void residual urine (PVR). PVR is defined as the volume (ml) of urine left in the bladder at the end of micturition.¹

The ICS Urodynamics Committee presents the teaching module "Measurement of post-void residual urine" to serve as a standard education of Good Urodynamic Practice for everyone involved in indicating, performing, and analyzing urodynamic testing in general and more specifically, performing analysis of voiding. The teaching module consists of a PowerPoint presentation, in combination with this manuscript. This manuscript serves as a scientific background review; the evidence base for the ICS PowerPoint presentation is available via http://www.icsoffice.org/eLearning/ or via the QR code on this page. The presentation explains testing requirements, clinical workup and analysis. The presentation and this manuscript are based on the highest-level available published evidence; evidence has been graded according to the modification of the Oxford Center for Evidence-Based Medicine levels of evidence used by the 5th International Consultation on Incontinence.² Where evidence is unavailable, experts' opinion has been used and the sentence is marked as "eo" (experts' opinion).

PATHOPHYSIOLOGY

PVR is very frequently the consequence of lower urinary tract dysfunction (LUTD), with bladder outlet obstruction (BOO) and underactive or acontractile detrusor as its most prevalent

examples. However, anatomical abnormalities for example, bladder diverticulum or large volume vesicourethral reflux may also cause PVR (in the latter case due to very early refilling of the bladder by the refluxed urine).³ BOO may be a consequence of prostate enlargement (BPE), urethral or meatal stricture, or incomplete or interrupted sphincter relaxation. Rarely a bladder stone or tumor is the cause of PVR.³ Underactive detrusor contraction can result from neurogenic, myogenic or psychogenic causes or be an effect or side effect of pharmacotherapy.³ In any individual, especially in the elderly, or the neurologically affected, the pathophysiology of PVR may be multifactorial.³ Furthermore, threshold values delineating what constitutes an abnormal PVR are poorly defined.^{4–7}

PREPARATION

PVR is measured after a flowmetry. However PVR can also be measured after visiting a normal toilet. No evidence exists about the reliability of PVR measurements in the last

(wileyonlinelibrary.com). DOI 10.1002/nau.22671

Christopher Chapple led the peer-review process as the Associate Editor responsible for the paper.

Potential conflicts of interest: Nothing to disclose.

^{*}Correspondence to: Enrico Finazzi Agró, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy. Email: efinazzi@tin.it Received 11 February 2014; Accepted 1 August 2014

Published online 22 September 2014 in Wiley Online Library

56 Asimakopoulos et al.

mentioned situation. No specific patient preparation is needed. It may be reasonable to ask the patient if the voiding was similar to a typical micturition in his/her daily life.

TECHNIQUE

Ideally, the interval between voiding and PVR measurement is of short duration. Furthermore, unrepresentative results may be obtained when voiding has to occur in unfamiliar surroundings or on command with a partially filled or overfilled bladder. Although transurethral catheterization has been accepted as the gold standard for PVR measurements, this may cause discomfort for patients and carries a risk of urinary tract infection and trauma.8 To overcome these limitations, non-invasive ultrasound bladder volume measurement has been used as an alternative to urethral catheterization since it represents a good compromise between accuracy and patients' safety/comfort.^{9–11,31} Traditionally, ultrasound bladder volume estimation can be performed in two ways; either by using realtime ultrasound to directly visualize the bladder 9-10 or by using a portable bladder scanner to calculate the volume automatically without directly visualizing the bladder.¹¹ Portable bladder scanners have many advantages over real-time ultrasound. They are easy to use, require only basic training, and can be used on the ward, freeing up precious radiology department resources. Furthermore, a bladder scanner may reduce catheterizations; minimize the threat of urethral injuries and causes less patient discomfort. Recently, in an aim to improve accuracy, a portable ultrasound bladder scanner equipped with an additional real-time pre-scan imaging (RPI) has been introduced. It seems to be able to enhance accuracy, as it can provide examiners with pre-localization of the central target point as well as information on the shape of the bladder prior to actual scanning, reducing the variability of the measured values.¹²

INTERPRETATION

PVR and Acute or Chronic Urinary Retention

Chronic post-void residual has been widely accepted as corresponding to a consistent PVR of more than 300 ml;⁴ however, some investigators have defined it as more than 400 ml,¹³ as 100–500 ml ¹⁴ or have given it no definite number at all.¹⁵ On the other hand, (chronic) PVR does not seem to be a strong predictor of acute urinary retention (AUR).¹⁶

BOO

It is commonly thought that the increase in residual urine indicates the severity of BOO. However, abnormal measurements of free uroflowmetry or PVR can detect only a voiding dysfunction without indicating BOO specifically. Detrusor underactivity may be the only cause of a large PVR. Nevertheless, PVR measurements are used as parameter of efficacy for medical and surgical treatments for BPO.^{17–18}

PVR and Clinical Progression Of BPO

High volume PVR is associated with an increased risk of LUTS deterioration and considered a predictor of BPO progression.^{19–20} In the EAU Guidelines on the Management of Male Lower Urinary Tract Symptoms (LUTS), incl. Benign Prostatic Obstruction (BPO),²¹ it is paraphrased that very large PVRs may herald progression of disease. However, expert opinion prevails that very large PVR volumes (>200–300ml) may indicate detrusor underactivity and predict a less favorable response to treatment. PVR as such is not considered a stringent contraindication for watchful waiting or medical therapy. The use of PVR measurements is considered optional in men with uncomplicated LUTS undergoing noninvasive therapy. No level of residual urine, of itself, mandates invasive therapy ²¹ and no PVR "cut-point" is yet established for decision-making.

PVR and Antimuscarinics in Men

Some recent placebo controlled clinical trial data suggest that anti-muscarinics (alone or in combination with tamsulosin) do not increase the risk of AUR and do not produce a clinically significant increase of PVR ^{22–23} in men, even in the presence of BPO. However, patients with significant PVR were excluded from these studies and the safety of anti-muscarinics in men with BPO remains to be confirmed in long-term trials.

Bacteriuria

Large and/or persistent PVRs may be associated with urinary tract infections (UTI), especially in persons at risk, such as children or patients with spinal cord injury or diabetes.²⁴ Although this association is confirmed in a pediatric population ²⁴ and in patients with neurogenic dysfunction,²⁵ other studies concluded that PVR does not correlate with bacteriuria, incontinence, immobility, impaired cognition, or neurological disease.^{26–27}

Chronic Kidney Disease (CKD)

Very large PVRs (>300 ml) may increase the risk of upper urinary tract dilation and renal insufficiency.²⁴ A PVR > 100 ml has been associated with CKD in elderly men with LUTS;²⁸ however, other studies do not show a significant correlation between PVR and CKD.²⁹

Female Incontinence

It is currently recommended that PVR should be measured during the assessment of women with signs and symptoms of urinary incontinence and/or overactive bladder syndrome to exclude voiding dysfunction.³ Although the available evidence is still limited, antimuscarinic or anticholinergic medication should generally be considered if PVR is low.³⁰ Measurement of PVR is recommended in the management of female urinary incontinence.³¹

Children

Assessment of PVR is mandatory in a variety of pediatric patients, such as those with voiding LUTS, UTIs, vesicoureteral reflux, posterior urethral valves or neural tube defects.²⁴

ACTUAL RECOMMENDATIONS

- The interval between voiding and PVR measurement should be as short as possible (eo). It is advisable to ask the patients if the voiding was similar to a typical micturition in his/her daily life (eo).
- Preferably use non-invasive ultrasound bladder volume measurement instead of urethral catheterization (LE 3).
- Measurement of PVR is recommended in the management of female urinary incontinence (LE 3).

 Assessment of PVR is considered mandatory in a variety of pediatric patients (LE 3).

EVIDENCE SUMMARY

- Unrepresentative results may be obtained when voiding has to occur in unfamiliar surroundings or on command with an only partially filled or an overfilled bladder (eo).
- A portable bladder scanner may present some advantages over real-time ultrasound (LE 3), especially if equipped with additional real-time pre-scan imaging (LE 3).
- There is no universally accepted definition of a significant residual urine volume. For clinical practice, PVR <30 ml can be considered insignificant, while residual volumes persistently >50 ml could be regarded as important (eo).
- Large PVR (>200-300 ml) often indicates LUTD and may predispose to unsatisfactory treatment results if invasive BOO treatment is undertaken (LE 3). Nevertheless, no level of residual urine, of itself, mandates invasive therapy and no PVR threshold is yet established for decision-making (LE 3).
- PVR cannot be used as a robust predictor of acute urinary retention (LE 3).
- PVR can detect only voiding dysfunction without indicating BOO specifically (LE 2–3).
- There is no evidence that PVR increases significantly in patients treated with anti-muscarinic drugs (LE 2). However, consider that patients with significant PVR were excluded from studies published up to now.
- PVR may be associated with UTI, especially in persons at risk, such as children or patients with neurogenic dysfunction (LE 3). This association among adults is far from clear (LE 3).
- Large PVR may be associated with chronic kidney diseases (LE 3).

CONCLUSIONS

Measurement of PVR is recommended in guidelines and recommendations on the management of LUTS and urinary incontinence. However, there is still lack of evidence on the precise associations of PVR with most of the lower urinary tract dysfunctions and, consequently, most of the ominous features associated with PVR are not evidence-based. We have reviewed the evidence and provided recommendations for ICS standard teaching purposes.

REFERENCES

- Abrams P, Cardozo L, Fall M, et al.; Standardisation Sub-committee of the International Continence Society. The standardisation of terminology of lower urinary tract function: Report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn 2002;21:167–78.
- Abrams P, Cardozo L, Khoury S, et al. Incontinence (5th International Consultation on Incontinence, Paris February, 2012), ICUD-EAU 2013.
- Campbell-Walsh Urology, 9th edition. Section XIV, Chapter 57 "Pathophysiology and classification of voiding dysfunction. Abnormalities of filling/ storage and emptying/voiding: Overview of pathophysiology."
- Abrams PH, Dunn M, George N. Urodynamic findings in chronic retention of urine and their relevance to results of surgery. Br Med J 1978;2:1258.
- Neal DE, Styles RA, Powell PH, et al. Relationship between detrusor function and residual urine in men undergoing prostatectomy. Br J Urol 1987;60:560.
- Neal DE, Styles RA, Powell PH, et al. Relationship between voiding pressures, symptoms and urodynamic findings in 253 men undergoing prostatectomy. Br J Urol 1987;60:554.

- Ghalayini IF, Al-Ghazo MA, Pickard RS. A prospective randomized trial comparing transurethral prostatic resection and clean intermittent selfcatheterization in men with chronic urinary retention. BJU Int 2005;96:93.
- Schaeffer AJ, Chmiel J. Urethral meatal colonization in the pathogenesis of catheter-associated bacteriuria. J Urol 1983;130:1096–9.
- Griffiths CJ, Murray A, Ramsden PD. Accuracy and repeatability of bladder volume measurement using ultrasonic imaging. J Urol 1986;136:808–12.
- Boomes GM, Millard RJ. The accuracy of portable ultrasound scanning in the measurement of residual urine volume. J Urol 1994;152:2083–85.
- Hartnell GG, Kiely EA, Williams G, et al. Real-time ultrasound measurement of bladder volume a comparative study of three methods. Br J Radiol 1987; 60:1063–65.
- Park YH, Ku JH, Oh SJ. Accuracy of post-void residual urine volume measurement using a portable ultrasound bladder scanner with real-time pre-scan imaging. Neurourol Urodyn 2011;30:335–8.
- Sakakibara R, Hattori T, Yasuda K, et al. Micturitional disturbance in acute disseminated encephalomyelitis (ADEM). J Auton Nerv Syst 1996;60:200.
- Gallien P, Reymann JM, Amarenco G, et al. Placebo controlled, randomised, double blind study of the effects of botulinum A toxin on detrusor sphincter dyssynergia in multiple sclerosis patients. J Neurol Neurosurg Psychiatry 2005;76:1670.
- 15. Thomas AW, Cannon A, Bartlett E, et al. The natural history of lower urinary tract dysfunction in men: The influence of detrusor underactivity on the outcome after transurethral resection of the prostate with a minimum 10-year urodynamic follow-up. BJU Int 2004;93:745.
- Roehrborn CG, Kaplan SA, Lee MW, et al: Baseline post void residual urine volume as a predictor of urinary outcomes in men with BPH in the MTOPS study. J Urol, suppl 2005;173:443 abstract 1638.
- Kaplan SA, Gonzalez RR, Te AE. Combination of alfuzosin and sildenafil is superior to monotherapy in treating lower urinary tract symptoms and erectile dysfunction. Eur Urol 2007;51:1717–23.
- Zhao Z, Zeng G, Zhong W, et al. A prospective, randomised trial comparing plasmakinetic enucleation to standard transurethral resection of the prostate for symptomatic benign prostatic hyperplasia: Three-year follow-up results. Eur Urol 2010;58:752–8.
- Roehrborn CG. BPH progression: Concept and key learning from MTOPS, ALTESS, COMBAT, and ALF-ONE. BJU Int 2008;101:17–21.
- Crawford ED, Wilson SS, McConnell JD, et al. MTOPS RESEARCH Group. Baseline factors as predictors of clinical progression of benign prostatic hyperplasia in men treated with placebo. J Urol 2006;175:1422–6 discussion 6–7.
- Oelke M, Bachmann A, Descazeaud A, et al. EAU Guidelines on the Management of Male Lower Urinary Tract Symptoms (LUTS), incl. Benign Prostatic Obstruction (BPO), http://www.uroweb.org/gls/pdf/12_Male_ LUTS LR%20May%209th%202012.pdf
- Roehrborn CG, Kaplan SA, Kraus SR, et al. Effects of serum PSA on efficacy of tolterodine extended release with or without tamsulosin in men with LUTS, including OAB. Urology 2008;72:1061–7 discussion 1067.
- Athanasopoulos A, Chapple C, Fowler C, et al. The role of antimuscarinics in the management of men with symptoms of overactive bladder associated with concomitant bladder outlet obstruction: An update. Eur Urol 2011; 60:94–105.
- Kelly CE. Evaluation of voiding dysfunction and measurement of bladder volume. Rev Urol 2004; 6 (Suppl 1):S32–7.
- Dromerick AW, Edwards DF. Relation of postvoid residual to urinary tract infection during stroke rehabilitation. Arch Phys Med Rehabil 2003; 84:1369–72.
- Omli R, Skotnes LH, Mykletun A, et al. Residual urine as a risk factor for lower urinary tract infection: A 1-year follow-up study in nursing homes. J Am Geriatr Soc 2008;56:871–4.
- Barabas G, Mölstad S. No association between elevated post-void residual volume and bacteriuria in residents of nursing homes. Scand J Prim Health Care 2005;23:52–6.
- Rule AD, Jacobson DJ, Roberts RO, et al. The association between benign prostatic hyperplasia and chronic kidney disease in community-dwelling men. Kidney Int 2005;67:2376–82.
- Hong SK, Lee ST, Jeong SJ, et al. Chronic kidney disease among men with lower urinary tract symptoms due to benign prostatic hyperplasia. BJU Int 2010;105:1424–8.
- Milleman M, Langenstroer P, Guralnick ML. Post-void residual urine volume in women with overactive bladder symptoms. J Urol 2004;172:1911–4.
- Lucas MG, Bedretdinova D, Bosch ILHR, et al. EAU Guidelines on Urinary Incontinence. http://www.uroweb.org/gls/pdf/16052013Urinary_ Incontinence_LR.pdf