DOI: 10.1002/nau.24342

REVIEW ARTICLE

Cerrourology OICS PRO SCATTOR WILEY

Prevalence of female urinary incontinence in the developing world: A systematic review and meta-analysis— A Report from the Developing World Committee of the International Continence Society and Iranian Research Center for Evidence Based Medicine

Hadi Mostafaei ^{1,2,3} 💿 Homayoun Sadeghi-Bazargani ^{1,2} 🗏
Sakineh Hajebrahimi ^{1,2,4,5} Hanieh Salehi-Pourmehr ^{1,2}
Morteza Ghojazadeh ^{1,2} Rahmi Onur ⁶ Riyad T. Al Mousa ⁷ Matthias Oelke ⁸

¹Research Center for Evidence Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

²Iranian Evidence Based Medicine (EBM) Centre, Joanna Briggs Institute Affiliated Group, Tabriz, Iran

³Department of Urology, Medical University of Vienna, Vienna, Austria

⁴Department of Urology, Imam Reza Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

⁵ICS Developing World Committee, Bristol, UK

⁶Department of Urology, Faculty of Medicine, Marmara University, Istanbul, Turkey

⁷Department of Urology, King Fahd Specialist Hospital-Dammam, Dammam, Saudi Arabia

⁸Department of Urology, Pediatric Urology and Urologic Oncology, St. Antonius Hospital, Gronau, Germany

Correspondence

Sakineh Hajebrahimi, MD, Research Center for Evidence Based Medicine, A Joanna Briggs Institute Affiliated Group, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 5166/15731, Iran.

Email: hajebrahimis@gmail.com and ebrahimis@tbzmed.ac

Abstract

Aims: The prevalence of urinary incontinence (UI) in the developing world varies widely. Factors influencing prevalence rates are a key area of interest, and knowledge of these would provide appropriate planning for preventive primary and secondary health care programs. The objective of this report was to synthesize the best available evidence to determine UI prevalence rates in adult women in a population setting.

Methods: A comprehensive search strategy was employed to find published and unpublished studies. Databases searched included PubMed, Embase, Scopus, Web of Science, and Google Scholar. We used the standardized Joanna Briggs Institute Meta-Analysis of Statistics, Assessment, and Review Instrument to appraise the included studies.

Results: In total, 54 studies with 138,722 women aged 10 to 90 years were included in this meta-analysis. Prevalence of UI ranged from 2.8% in Nigeria to 57.7% in Iran. The total prevalence of UI was 25.7% (95% CI: 22.3-29.5) and the prevalence rates for stress, urgency, and mixed UI were 12.6% (95% CI: 10.3-15.4), 5.3% (95% CI: 3.4-8.3), and 9.1% (95% CI: 7.0-11.8), respectively. When we excluded the elderly population, UI prevalence only slightly changed (26.2%; 95% CI: 22.6-30.2). Prevalence rates varied considerably during different recall periods, ranging from 15.6% for UI during the last 12 months to 41.2% for UI during the last 3 months. However, the study quality and use of validated vs nonvalidated questionnaires only had a minor impact on the prevalence rates.

Conclusions: The prevalence, methodology, and definition of UI vary widely. A large-scale multinational study with a homogeneous methodology is

necessary to correctly calculate and compare the prevalence rates to improve health policies in the developing world.

K E Y W O R D S

developing countries, prevalence, urinary incontinence

1 | INTRODUCTION

Urinary incontinence (UI) is a global medical problem observed in all age groups in different countries, cultures, and ethnicities.¹⁻³ The International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction defined UI as a "complaint of loss of urine."⁴ UI is a clinical condition⁵ and not a disease itself.⁶ UI is often underestimated and underdiagnosed in both the developed and developing world.7 UI is more common in older women² and can affect up to 58% to 84% of the elderly population.⁵ However, its general prevalence is reported to be approximately 34% in elderly women and 22% in elderly men.⁸ A British survey showed that the prevalence of female UI may only be approximately 14%.⁹ The prevalence rates vary in different countries because of the utilization of various definitions of UI, target populations, study characteristics, assessment tools, response rates, age groups, gender, availability of health care, and other factors.^{10,11}

There are many definitions and assessment tools for the diagnosis of UI. This variety limits the establishment of UI prevalence rates and definition of the problem. Many women consider UI as an inevitable part of their life which can delay or even prevent the diagnosis.¹² Milsom et al¹³ stated that (a) most of the people with UI do not seek help, (b) only a small portion of this population receive medication or surgery, and (c) the worldwide estimation of UI is limited due to the lack of epidemiological data from the underrepresented research populations. These statements apply especially for women living in developing countries. Parameters with an influence on the (change of) symptomatology are a key area of interest, and knowledge of these factors can be useful for primary prevention or prevention of deterioration of the condition. The association of UI with other diseases, socioeconomic status, ethnicity, and lifestyle has only been examined in a few studies.^{6,14}

UI is associated with a number of psychological issues such as anxiety, embarrassment, fear, loss of self-esteem, worry, vulnerability, shame, depression, paranoia, and uncleanliness.¹⁵ UI has been declared as a global medical problem with a considerable impact on health care systems.^{15,16} Several studies have been conducted to determine the effect of UI on quality of life.^{17,18} Recent studies demonstrated that UI is also a predictor of death.¹⁹⁻²² When compared to continent patients, UI is associated with increased mortality with a pooled nonadjusted hazard ratio of 2.22 (95% CI: 1.77-2.78). The mortality risk increases with UI severity: 1.24 (95% CI: 0.79-1.97) for light, 1.71 (95%CI: 1.26-2.31) for moderate, and 2.72 (95% CI: 1.90-3.87) for severe UI.²³ Therefore, health systems should be able to predict the burden and mortality of the condition in different populations to improve continence programs.

1.1 | Aim of the review

Based on our initial literature search, no systematic review or meta-analysis on UI in the developing world has been published so far. Our review aims to identify studies on UI in the developing world, calculate the total prevalence, the prevalence rates of SUI, UUI, and MUI, and define parameters that could influence UI prevalence rates (eg, study quality, recall periods, different questionnaires, and geographical regions).

2 | MATERIAL AND METHODS

The title of our analysis has been registered in http:// joannabriggs.org/research/registered titles.aspx

2.1 | Review questions

Primary outcome measure was the UI prevalence rate in adult women living in developing countries, as published in population-based studies. The definition of developing countries followed the recommendations of the World Bank for low- or middle-income countries.²⁴ Secondary outcome measures were the establishment of prevalence rates of UI subtypes and determination of their associated risk factors.

2.2 | Inclusion criteria

• Participants: the quantitative component of this review only considered studies that included adult women

who live in developing countries. Only populationbased studies were included.

- · Outcomes: this review considered all related studies that included the following outcome measures: pooled prevalence and prevalence rates for different types of UI (including SUI, UUI, and MUI).
- Types of studies: the quantitative component of the review considered epidemiological study designs including prospective and retrospective cohort studies, case-control studies and analytical cross-sectional studies. The quantitative component of the review also considered descriptive epidemiological study designs, including descriptive cross-sectional studies.

2.3 Search strategy

The search strategy aimed to identify both published and unpublished studies. A three-step search strategy was utilized in this review. Initially, a limited search of the PubMed/Medline and CINAHL databases was undertaken, followed by the analysis of the text identifying words used in the title and abstract, and of the index terms used to describe the article. A second search using all identified keywords and index terms was then undertaken across all included databases (see list below). Afterwards, the reference list of all identified reports and articles was searched for additional studies. Studies published in any language were considered suitable for this systematic review.

2.4 Databases

- Stage 1: PubMed/Medline, CINAHL, Virginia Henderson Library.
- Stage 2: Medline, CINAHL, Academic Search Premiere, Web of Science, DARE, PsyINFO, and ERIC.
- Grey Literature: Virginia Henderson Library, MEDNAR (which includes Google Scholar), New York Academy of Medicine Grey Literature Report, scirus.com, and Proquest Dissertations. Others resources were professional organizations relevant to the review objective to search for reports, guidelines, or unpublished research.

Initial keywords were "urinary incontinence" and "prevalence" (Supporting Information Appendix 1).

2.5 Assessment of methodological quality

Publications with quantitative data were selected by two independent reviewers (HM and SH) for assessment of the methodological validity before inclusion in the review using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI)²⁵ (Supporting Information Appendix 2). Disagreements between the reviewers were resolved by discussion or a third reviewer (HSP). Selected studies were categorized into three quality groups based on the score of each study. A total score of greater than 80% was defined as high quality, a score between 60% and 80% as medium quality and a score less than 60% as low quality.

2.6 Data collection

Quantitative data extracted from papers used the standardized data extraction tool from JBI-MAStARI (Supporting Information Appendix 3). Extracted data included specific details about the study populations, methods, and outcomes of interest for the review question and other specific objectives.

2.7 Data synthesis

Quantitative papers, whenever possible, were pooled in the statistical meta-analysis by using the JBI-MAStARI and Comprehensive Meta-Analysis (CMA) software (version 2.2; Biostat, Englewood, NJ). All results were subject to double data entry. Weighted mean differences (for continuous data) and their 95% confidence intervals (95% CI) were calculated for the analyses. Heterogeneity was assessed statistically by using the standard χ^2 test and also explored by using subgroup analysis based on the different quantitative study designs included in this review. Where statistical pooling was not possible, findings were presented in a narrative form, including tables and figures.

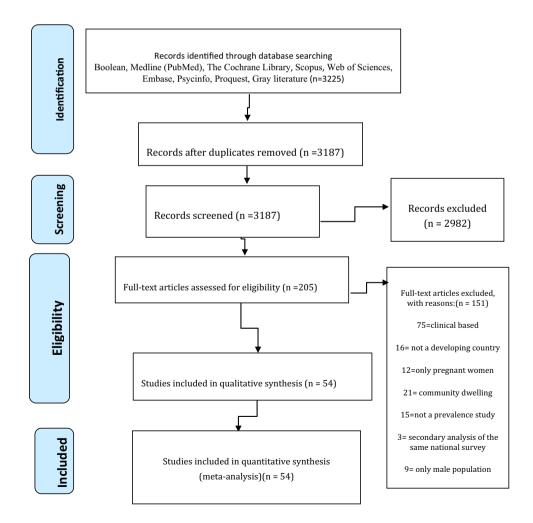
Assessment of heterogeneity 2.8

Both fixed method and random effects models were used. Statistical heterogeneity was assessed by using the I^2 value and the result of the χ^2 test. Results of the appropriate model are presented as forest plots.

RESULTS 3

3.1 Selection of studies

We initially identified a total of 3225 studies. We then removed duplicate articles (n = 38) and screened the title as well as abstract of the remaining studies (n = 3187). Articles


unrelated to UI were excluded, for example fecal incontinence. Studies related to other urinary problems, for example overactive bladder, urinary tract infections or male incontinence, and studies in developed countries were also excluded. Of the initially selected titles and abstracts, 2982 had to be excluded and, finally, 205 articles were retrieved for the detailed full-text review. Of these, 151 articles were excluded because they did not meet the inclusion criteria. for example prevalence studies in pregnant women. Finally, a total of 54 studies were included in the systematic review.^{2,6,8,9,23,26-71} All studies underwent methodological quality assessment. The summary of search results and study selection is shown in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram (Figure 1). Although all studies were included in the meta-analysis, five studies only reported about the prevalence rates for UI subtypes but not about the total prevalence rate.^{8,54,63,66,67} Therefore, not all of the 54 selected studies appeared in the forest plots for all subgroup analyses.

3.2 | Assessment of the methodological quality

All articles were selected for quality synthesis (Table 1). The JBI checklist for critical appraisal of systematic reviews was used for this purpose.²⁵ No article had to be excluded because of the acceptable overall quality of the included studies. The numbers of high-, medium-, and low-quality articles were 23 (42.6%), 25 (46.3%), and 6 (11.1%), respectively (Figure 2).

3.3 | Assessment of heterogeneity

To evaluate the level of heterogeneity, I^2 statistic was calculated in the whole study and the subgroups. The I^2 across all studies and considering the random effect model was 48.84. In the subgroups based of the quality of the studies, I^2 was "0", 45.17, and 55.42 for low-, medium- and high-quality studies, respectively. In the

FIGURE 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) chart to demonstrate the selection of studies for analysis of the prevalence of urinary incontinence in the developing world

TABLE 1 Charac	Characteristics of the included studies and probability of urinary incontinence (UI) and incontinence types, listed in alphabetical order by first author	lies and probability	/ of urinary incontine	nce (UI) and incon	tinence types, listed in al	phabetical order by first a	author
Reference	Study method	country	Prevalence of UI (%)	Age (y)	Sample size (n)	Definition of incontinence	Questionnaire
Ahmadi ²	cross-sectional	Iran	38.4	>40	800/800	not ICS	
Amaro ⁶		Brazil	27	>20	685/685	not ICS	
Bodhare ⁹	cross-sectional/ descriptive	India	10	>35	552	ICS	self-administered
Brieger ^s		Hong Kong		10- 90	819/3248	not ICS	Kings College Urodynamics (Chinese version)
Castro ⁵³	cross-sectional	Colombia	48		40–59	609/609	not ICS
Cayan ²⁸		Turkey	14.6	>18	1217		ICIQ-sf
Chen ²⁹		Taiwan	53.7	>20	1584	ICS	Bristol(Chinese version)
Choi ³⁰	cross-sectional/ telephone survey	Korea	23.8	>30	500/500	ICS	
Choo ¹²	telephone survey	Korea	40.8	30-79	1303/1500	ICS	
El-Azab ³¹	cross-sectional	Egypt	54.8	>20	1652/1652	ICS	UDI-6(Arabic version)
Eshkoor ²⁶		Malaysia	3.8	>60	2322/2322	not ICS	
Garcia-Perez ³³	population-based cross-sectional	Mexico	18.4	25-54	1307/1307	not ICS	self-administered
Ge ⁷²		China	22.1	>20	3100	ICS	ICIQ-FLUT
Hajebrahimi ²⁷	cross-sectional	Iran	23.6	15-53	400	not ICS	
Hemachandra ⁵⁴		Sri Lanka		15-49	1800	ICS	
Hornge ³²	national health interview system	Taiwan	22	35-64	4661	ICS	self-administered
Hsieh ⁴²	national survey	Taiwan	29.8	>60	2410	not ICS	
Islam ³³		Bangladesh	23.7	30-59	1590/1590	not ICS	QUID
Javadifar ³⁴	cross-sectional	Iran	57.7	15-49	2000/2000	not ICS	ICIQ-sf
Jiang ⁶⁸		China	27.7	>18	2750	not ICS	ICIQ-SF
Jokhio ³⁵	cross-sectional	Pakistan	11.5	>15	5064/5284	not ICS	self-administered
							(Continues)

Reference	Study method	country	Prevalence of UI (%)	Age (y)	Sample size (n)	Definition of incontinence	Questionnaire
Juliato ⁵⁶	cross-sectional	Brazil	23.6	45-60	749	ICS	ICIQ-SF (Portuguese version)
Lee ³⁶		Korea	24.4	>19	13,484/13,484	ICS	questionnaire used in 4 European studies
Li ⁶⁹	cross-sectional	China	30.9	>20	19024	ICS	ICIQ-FLUT
Liu ⁵⁸		China	23.3	>20	5433/5467	ICS	adapted from ICIQ-FLUT
Kim ⁷³	cross-sectional	Korea	7.5	19–65	5,928	not ICS	
Kwon ⁵⁷	national survey	Korea	7.9	>20	9873	not ICS	
Ma ⁵⁵		Hong Kong	34	>18	1018	not ICS	not defined
Manonai ³⁷	cross-sectional	Thailand	36.5	15-95	1126/1500	ICS	
Marques ³⁸	cross-sectional	Brazil	29.4	>60	1700/1705	ICS	
Megabiaw ³⁹	cross-sectional	Ethiopia	7.8	16-80	395/395	ICS	adapted from EPINCONT
Menezes ⁵⁵	population-based/ cross-sectional/ epidemiological	Brazil	10.7	>40	657	ICS	
Mikou ⁴⁰		Morocco	27.1	>18	1000	ICS	
Mohd Sidik ⁴³	cross-sectional	Malaysia	6.6	>60	223/223	not ICS	Malay version of the Barthel's Index (BI)
Mourad ⁷¹	cross-sectional survey (EPIC)	Egypt	27	≥18	3600	ICS	
Nobrega ⁶⁰	observational cross- sectional analytical	Brazil	17.5	19–59	194	ICS	self-administered
Ojengbede ⁶¹	prospective cohort	Nigeria	2.8	>18	5001/5001	not ICS	
Ozerdogan ⁴⁴	cross-sectional	Turkey	25.8	>20	625/625	ICS	Thomas et al.
Onur ⁶²	cross-sectional	Turkey	46.3	17-80	2275/2275	ICS	UDI-6
Pang ⁶³	telephone survey	Hong Kong		10-90	749	not ICS	0DI-6
Pathiraja ⁶⁴	cross-sectional	Sri Lanka	55.5	>18	2354	not ICS	

6 WILEY - Urodynamics

TABLE 1 (Continued)

,	•							
Reference	Study method	country	Prevalence of UI (%)	Age (y)	Sample size (n)	(u)	Definition of incontinence	Questionnaire
Prabhu Shruti ⁶⁵	cross-sectional/ descriptive	India	25.5	>20	353		ICS	
Santos ⁴¹	cross-sectional/ epidemiological	Brazil	20.1	>18	519		ICS	reference to other article
Stones ⁴⁵		China	6.2	15-34	3150/3150		not ICS	
Tamanini ⁴⁶	cohort	Brazil	28.2	>60	1413		not ICS	not defined
Tseng ⁴⁸		Taiwan	21.6	>65	504/504		not ICS	
Tozun ⁴⁷		Turkey	49.5	>20	1585/1585		ICS	ICIQ-sf
Velazquez Magna ⁴⁹	observational transverse and descriptive	Mexico	46.5	20-80	80/80		ICS	ICIQ-UI-sf
Wong ⁶⁶	telephone survey	China		17-77	540/540		not ICS	0.DI-6
Wu^{50}		China	35.2	>20	2448/2500		ICS	ICIQ-FLUT
$\mathbf{Y}\mathbf{u}^{70}$	cross-sectional	China	33.4	>60	743/743		not ICS	ICIQ-FLUT
Zhang ⁶⁷		China		>20	6066		not ICS	Bristol
Lei Zhang ⁵¹	cross-sectional	China	31.9	>20	20,000		ICS	Bristol + ICIQ-FLUTS
Zhu ⁵²	cross-sectional	China	38.5	>20	5300		ICS	ICIQ-FLUT
							Incontinence type (%)	(%)
Reference	Time of UI diagnosis	Validation s	status co	country/region	year	Sex		MUI
Ahmadi ²	daily leak/activity/ using pads	оп	laı	region	2007	ц		
Amaro ⁶	any involuntary loss of urine	оп	lai	region	2009	ц		
Bodhare ⁹	any involuntary loss of urine	yes	lei	region	2010	ц	5.7 2.3	2
Brieger ⁸	unacceptable involuntary loss of urine	yes	tel	telephone survey	1996	ц	7 15	14
Castro ⁵³	any involuntary loss of urine	ои	lei	region (Amazon tribes)	2010	ц		
Cayan ²⁸	UI in the past 4 weeks	yes	C0	country	2016	ц	4.7	1.8
								(Continues)

TABLE 1 (Continued)

7

						Incontinence type (%)	type (%)	
Reference	Time of UI diagnosis	Validation status	country/region	year	Sex	IUS	UUI	MUI
Chen^{29}	UI in the past 4 weeks	yes	region	2003	Ч	18	18.6 (overflow]	17.1
Choi ³⁰	involuntary loss in the last 6 months	по	Country(3 cities)	2012	ц			
Choo^{12}	UI in the past 4 weeks	yes	telephone survey	2003	ц	22.9	3.1	14.9
El-Azab ³¹	any involuntary loss of urine	yes	region	2007	ц	14.8	15	25
Eshkoor ²⁶		no	country		M/F			
Garcia-Perez ³³	involuntary loss in the last year	yes	region (northern Mexico)	2005	ц	10.4	1.8	57.2
Ge^{72}	UI in the past 4 weeks	yes	region	2009	Ц	12.9	1.7	7.5
Hajebrahimi ²⁷	any involuntary loss of urine	no	region	1998–1999	Ц			
Hema- chandra ⁵⁴		no	country	2006-2007	ц	9.8		
Hornge ³²	Involuntary loss in the last year	no	national survey	2005	ц			
Hsieh ⁴²	any involuntary loss of urine	no	country	1999	ц			
Islam ³³	UI in the past 4 weeks	yes	country	2013-2014	ц			
Javadifar ³⁴	UI in the past 4 weeks	yes	region	2018	ц			
Jiang ⁶⁸	UI in the past 4 weeks	yes	region	2016	Н	23.1	1.6	3.0
Jokhio ³⁵		no	region	2012	ц	4.7	3.2	2.8
Juliato ⁵⁶	any involuntary loss of urine	yes	region	2012-2013	ц	6.4	7.8	9.5
Lee ³⁶	any involuntary loss of urine	по	national survey	2005	ц	11.9	1.9	10.2
Li ⁶⁹	UI in the past 4 weeks	yes	country	2006	ц		2.6	9.4
Liu ⁵⁸	UI in the past 4 weeks	yes	region	2010-2012	ц	14	3	6.3

8 WILEY-Beurourology

TABLE 1 (Continued)

						Incontinence type (%)	type (%)	
Reference	Time of UI diagnosis	Validation status	country/region	year	Sex	SUI	UUI	MUI
Kim ⁷³	any involuntary loss of urine	оп	4 th Korean National Health & Nutrition Examination Survey	2008-2009	ц	OR (95%CI) for work schedu work schedu	OR (95%CI) for working women with a daytime work schedule was 2.14 (1.18–3.87)evening work schedules, it was 1.35 (1.05–1.74)	n a daytime 7)evening -1.74)
Kwon ⁵⁷	do you have UI?	no	national survey	2007-2009	ц			
Ma ⁵⁵	any involuntary loss of urine	yes	region	1994	Ĺ			
Manonai ³⁷	UI in the past 4 weeks	yes	region	2003-2004	ц	33.6		
Marques ³⁸	any involuntary loss of urine	yes	region	2009-2010	M/F			
Megabiaw ³⁹	involuntary loss in the last year	no	region	2012	ц	1.2		
Menezes ⁵⁵	any involuntary loss of urine	no	region	2003	M/F			
Mikou ⁴⁰	UI in the past 4 weeks	no		1998	ц			
Mohd Sidik ⁴³	any involuntary loss of urine	yes	region	2002	M/F			
Mourad ⁷¹		no	country	2018	ц	9	6	12
Nobrega ⁶⁰	any involuntary loss of urine	no	region	2013	ц			
Ojengbede ⁶¹	any involuntary loss of urine	no	country	2009	ц	2.3	1	0.6
Ozerdogan ⁴⁴	UI in the past 4 weeks	no	region	2003	ц	11.1	7.04	7.7
Onur ⁶²	any involuntary loss of urine	yes	region	2009	ц	46	43	
Pang ⁶³	any involuntary loss of urine	yes	telephone survey	2001-2002	ц	13	15.5	30.9
Pathiraja ⁶⁴	UI in the past 3 months	ou	country	2015-2016	۲	10	15.6	29.9 (Continues)

TABLE 1 (Continued)

9

Continued	
,	
TABLE	

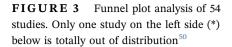
						Incontinence type (%)	type (%)	
Reference	Time of UI diagnosis	Validation status	country/region	year	Sex	IUS	UUI	MUI
Prabhu Shruti ⁶⁵	definition of ICS was used	yes	region	2010-2011	ц	14.3	8.2	6
Santos ⁴¹		no	region	2007-2008	M/F			
Stones ⁴⁵	not defined	no	country(3 regions)	2003	ц			
Tamanini ⁴⁶	UI in the past 3 months	yes	region	2010	н			
Tseng ⁴⁸	any involuntary loss of urine	no	region	1997	M/F	10.9	6.6	6.3
$\operatorname{Tozun}^{47}$	UI in the past 4 weeks	yes	region	2007	ц	16.1	8.5	24.9
Velazquez Magna ⁴⁹	UI in the past 4 weeks	yes	region	2006	Ĺ			
Wong ⁶⁶	UI in the past 3 months	yes	country	2005	н	40.8	20.4	15.9
Wu ⁵⁰	UI in the past 4 weeks	yes	region	2009	ц	26.4	1.9	6.9
Yu^{70}	UI in the past 4 weeks	yes	region	2007	ц			
Zhang ⁶⁷	UI in the past 4 weeks	yes	region	2005	ц	16.6	10	
Lei Zhang ⁵¹	UI in the past 4 weeks	yes	country	2006	ц	18.9	2.6	9.4
Zhu ⁵²	UI in the past 4 weeks	yes	region	2005	Н	22.9	2.8	12.4
Blank cells indicate missing data.	ssing data.							

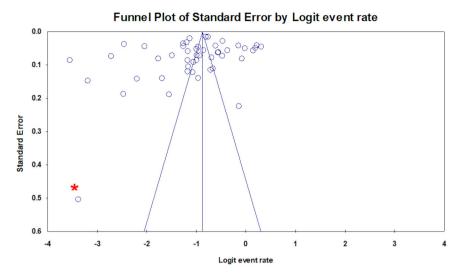
Abbreviations: F, females; M, males; MUI, mixed urinary incontinence; SUI, stress urinary incontinence; UUI, urgency urinary incontinence.

No	Authors	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
1	Ahmadi [2]	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{S}}$	\odot	\odot	÷
2	Amaro [6]	\odot	\odot	\odot	\odot	\odot	:	\odot	\odot	::
3	Bodhare [9]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
4	Brieger [8]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	÷
5	Castro [53]	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{i}}$	\odot	\odot	\odot
6	Cayan [28]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	÷
7	Chen [29]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
8	Choi [30]	\odot	\odot	\odot	\odot	٢	$\overline{\mathbf{i}}$	÷	$\overline{\mathbf{i}}$	
9	Choo [12]	\odot	\odot	\odot	$\overline{\mathbf{S}}$	٢	\odot	\odot	\odot	\odot
10	El-Azab [31]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
11	Eshkoor [26]	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{S}}$	\odot	\odot	\odot
12	Garcia-Perez [33]	\odot	\odot	٢	٢	٢	٢	٢	\odot	٢
13	Ge [72]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
14	Hajebrahimi [27]	\odot	\odot	\odot	٢	٢	$\overline{\mathbf{S}}$	٢	\odot	٢
15	Hemachandra [54]	::			\odot	\odot		\odot		\odot
16	Hornge [32]	\odot	\odot	\odot	\odot	\odot		\odot	\odot	÷
17	Hsieh [42]	$\overline{\boldsymbol{\otimes}}$	\odot	\odot	\odot	\odot		\odot	\odot	\odot
18	Islam [33]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
19	Javadifar [34]	\odot	\odot	8	$\overline{\boldsymbol{\aleph}}$	\odot	\odot	\odot	<u></u>	\odot
20	Jiang [68]	\odot	\odot	\odot	\odot	\odot		÷	\odot	\odot
21	Jokhio [35]	\odot	\odot	\odot	\odot	\odot	8	\odot	\odot	\odot
22	Juliato [56]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
23	Lee [36]	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{S}}$	\odot	\odot	÷
24	Li [69]	\odot	\odot	\odot	\odot	\odot	\odot		\odot	\odot
25	Liu [58]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
26	Kim [73]	\odot	\odot	\odot	\odot	\odot	$\overline{\otimes}$	\odot	\odot	
27	Kwon [57]	\odot	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{S}}$	\odot	
28	Ma [55]	\odot	\odot	$\overline{\otimes}$	\odot	\odot	\odot	\odot	\odot	÷
29	Manonai [37]	٢	\odot	\odot	\odot	\odot	8	\odot	\odot	\odot

FIGURE 2 Quality scoring results with the JBI Critical Appraisal Checklist for Studies Reporting Prevalence Data consisting of nine questions (Q1-Q9, see Supporting Information Appendix 2). The questions with answer "yes" are shown as , with answers "no" as , and answer "unclear" as \. A total score of greater than 80% was defined as high quality, a score between 60% and 80% as medium quality and a score less than 60% as low quality

	Total	87.0%	94.4%	90.7%	92.6%	98.1%	55.6%	87.0%	94.4%	62.7%
54	Zhu [52]		\odot	<u></u>	\odot	<u></u>	\odot	<u></u>	<u></u>	<u></u>
53	Lei Zhang [51]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
52	Zhang [67]	\odot	:	\odot	\odot	\odot	\odot	\odot	\odot	\odot
51	Yu [70]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
50	Wu [50]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
49	Wong [66]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
48	Velazquez Magna [49]		\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot
47	Tozun [47]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	
46	Tseng [48]	\otimes	\odot	\odot	\odot	\odot	8	\odot	\odot	\odot
45	Tamanini [46]	\otimes	٢	\odot	٢	\odot	٢	\odot	\odot	\odot
44	Stones [45]	\odot	\odot	\odot	\odot	\odot		\odot	\odot	<u>.</u>
43	Santos [41]	\odot	\odot	\odot	\odot	\odot		:	\odot	<u>.</u>
42	Prabhu Shruti [65]		<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
41	Pathiraja [64]	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u> </u>
40	Pang [63]				8					
39	Onur [62]	<u></u>	\odot	<u></u>		\odot		<u></u>	\odot	\odot
38	Ozerdogan [44]	\odot	\odot	\odot	\odot	\odot	8	\odot	\odot	÷
37	Ojengbede [61]		\odot	\odot	\odot	\odot	8	\odot	\odot	::
36	Nobrega [60]	٢	((٢	٢	$\overline{\mathbf{S}}$	÷	\odot	÷
35	Mourad [71]	<u>:</u>		\odot		\odot	:	\odot	\odot	\odot
34	Mohd Sidik [43]	$\overline{\mathbf{S}}$	\odot	\odot	\odot	\odot	\odot	\odot	\odot	÷
33	Mikou [40]	\bigcirc	\odot		\odot		$\overline{\mathbf{i}}$		\odot	
32	Menezes [55]	\odot	\odot	\odot	\odot	\odot	$\overline{\mathbf{i}}$		$\overline{\mathbf{i}}$	
31	Megabiaw [39]	٢	٢	٢	٢	٢	$\overline{\mathbf{S}}$	\odot	\odot	\odot
30	Marques [38]	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot


FIGURE 2 Continued


subgroups based on the definition of UI, I^2 was 17.26, 47.91, 4.44, 0, 65.28, and 46.90 for UI defined as "any involuntary loss of urine", "involuntary loss of urine in the last 4 weeks", "involuntary loss of urine in the last 3 months", "involuntary loss of urine in the last 6 months", "involuntary loss of urine in the last 6 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss of urine in the last 9 months", "involuntary loss 0 months",

the I^2 was calculated 64.70 in the "country" subgroup and 26.87 in "region" subgroup.

3.4 | Publication bias

To assess the publication bias of the selected studies, a funnel plot was drawn. It seems that the sample size of the included studies is appropriate for the purpose of

Study name		Statisti	cs for ea	nch study		Event rate and 95% Cl
	Event rate	Lower limit	Upper limit	Z-Value	p-Value	
Ahmadi et al. 2007	0.384	0.351	0.418	6.501-	0.000	
Amaro et al. 2009	0.270	0.238	0.305	11.557-	0.000	
Bodhare et al. 2010	0,100	0.078	0.128	15.487-	0.000	
Castro	0.480	0.441	0.520	0.987-	0.324	
Cayan 2016	0.146	0.127	0.167	21.758-	0.000	
Chen et al. 2003	0.537	0.509	0.564	2.617	0.009	
Choi et al. 2012	0.238	0.203	0.277	11.081-	0.000	
Choo et al. 2003	0.408	0.382	0.435	6.604	0.000	
El-Azab et al. 2007	0.548	0.524	0.572	3.896	0.000	
Eshkoor et al. 2015	0.040	0.030	0.052		0.000	
Garcia-Perez et al. 2005	0.184	0.164	0.206	20.865-	0.000	
Garcia-Perez et al. 2000 Ge et al. 2009	0.184	0.104	0.200	28.907-	0.000	
Hajebrahimi et al. 1998-1999	0.221	0.207	0.230	9.788-	0.000	
	0.230	0.190	0.281	35,795-	0.000	
Hornge et al. 2005 Hsieh et al. 1999	0.220	0.208	0.232	30.790-	0.000	
Islam et al. 2013-2014	0.237	0.2/6	0.322	19.825-	0.000	
Javadfar et al. 2018	0.577	0.555	0.598	6.860 21.068-	0.000	
Jiang Yan et al. 2016			0.290	46.327-		
Jokhio et al. 2012	0.115	0.107			0.000	
Juliato 2017	0.236	0.207	0.268	13.652-	0.000	
Kim 2017		0.069		50.948-		
Kwon and Lee 2007-2009	0.079	0.074	0.084	65.826-	0.000	
Lee et al. 2005	0.244	0.237	0.251	56.400-	0.000	
Lei Zhang et al. 2006	0.319	0.312	0.326	48.712-	0.000	
Li 2010 et al.	0.309	0.302	0.316	51.293-	0.000	
Liu et al. 2010-2012 Ma 1997	0.233	0.222	0.244	37.125-	0.000	
	0.340		0.390	5.978-	0.000	
Manonai et al. 2003-2004 Manonai et al. 2000-2010	0.365	0.337		8.945-		
Marques L. M. et al. 2009-2010 Magdrian et al. 2012		0.273	0.316	16.480-	0.000	
Megabiaw et al. 2012 Megabiaw et al. 2002	0.078	0.055	0.109	13,164-	0.000	
Menezes et al. 2003	0.107	0.086	0.133	16.811-	0.000	
Mikou et al 2001	0.271	0.244	0.299	13.909-	0.000	
Mohd Sidik	0.990	0.964	0.997	6.828	0.000	
Mourad et al.	0.270	0.250	0.291	19.008-	0.000	
Nobrega et al. 2013	0.175	0.128	0.235	8.201-	0.000	
Ojengbede et al. 2009	0.028	0.024	0.033	41.383-	0.000	
Onur et al. 2009	0.463	0.443	0.484	3.526-	0.000	
Ozerdogan et al. 2003 Pathininia et al. 2015 2016	0.258	0.225	0.294	11.555-	0.000	
Pathiraja et al. 2015-2016	0.555	0.535	0.575	5.326	0.000	
Prabhu Shruti et al. 2010-2011	0.255	0.212	0.303	8.780-	0.000	
Santos et al. 2007-2008	0.201	0.169	0.238	12,599-	0.000	
Stones et al. 2003	0.062	0.054	0.071	36.769-	0.000	
Tamanini et al. 2010	0.282	0.254	0.311	12.982-	0.000	
Tazun et al. 2007	0.495	0.470	0.520	0.398-	0.691	
Tseng et al. 1997	0.216	0.182	0.254	11.910-	0.000	
Velazquez Magna et al. 2006	0.465	0.359	0.574	0.626-	0.532	
Wu er al. 2009	0.352	0.333	0.371	14.420-	0.000	
Yu 2007	0.334	0.301	0.369	8.883-	0.000	
ZHU Lan et al. 2005	0.385	0.372	0.398	16.468-	0.000	
ooled prevalence	0.257	0.223	0.295	11.033-	0.000	♦
						-1.00 -0.50 0.00 0.50 1.

FIGURE 4 Prevalence of urinary incontinence in the individual studies of the selected literature resulting in a pooled prevalence rate of 25.7% (95% confidence interval: 22.3-29.5) using random-effects analysis

13

Frade Lower Lower Lower Park Bochmer et al. 2010 SUII 0.007 0.000 0.000 15285 0.000 Copen 2016 SUII 0.007 0.000 0.000 15285 0.000 Copen 2016 SUI 0.010 0.022 22021- 0.000 Chen et al. SUI 0.116 0.122 223786 0.000 Garcia-Freez et al. SUI 0.116 0.122 23786 0.000 Garcia-Freez et al. SUI 0.014 0.122 23786 0.000 Garcia-Freez et al. SUI 0.014 0.122 23786 0.000 Juinto 2017 SUI 0.064 0.069 0.172 27270- 0.000 Juinto 2017 SUI 0.064 0.069 0.072 23142- 0.000 Juinto 2016 0.021 0.025 0.027 23142- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 </th <th>Study name</th> <th>Subgroup within study</th> <th></th> <th>Statist</th> <th>ics for ea</th> <th>ch study</th> <th></th> <th>Event rate and 95% CI</th>	Study name	Subgroup within study		Statist	ics for ea	ch study		Event rate and 95% CI
Beteger et al. SUI 0.070 0.050 0.080 18.888 0.000 Chen et al. SUI 0.101 0.020 22.201- 0.000 Chen et al. SUI 0.120 22.201- 0.000 Carcia-Perzect al. SUI 0.140 0.122 22.3766- 0.000 Carcia-Perzect al. SUI 0.120 0.123 0.127 22.3766- 0.000 Ge et al. SUI 0.021 0.223 27.753- 0.000 0.000 Jiang Yine et al. 2016 SUI 0.121 0.218 0.242 24.862- 0.000 Jiang Yine et al. SUI 0.121 0.118 0.117 72.757- 0.000 Jiang Yine et al. SUI 0.129 0.243 24.852- 0.000 0.000 Jiang Yine et al. SUI 0.120 0.020 9.64.52- 0.000 0.000 0.022 9.64.52- 0.000 Jiang Yine et al. SUI 0.120 0.020 0.022 9.64.52- 0.000 0.000 0.021 9.74.52- 0.000 0.000 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>Z-Value</th><th>p-Value</th><th></th></td<>						Z-Value	p-Value	
Common 2016 SUI 0.047 0.036 0.060 22.01- 0.000 Chene tai. SUI 0.180 0.022 0.020 0.000 Chene tai. SUI 0.180 0.022 0.000 0.000 Careia Preze tai. SUI 0.180 0.182 0.186 0.222 0.236 0.000 Jang Yane tai. SUI 0.190 0.180 0.113 2.7353 0.000 Jang Yane tai. SUI 0.211 0.244 2.828-0.000 0.000 Jang Yane tai. SUI 0.021 0.248 0.000 0.000 Jang Yane tai. SUI 0.011 0.114 0.127 7.5270 0.000 Lia data dat. SUI 0.018 0.180 0.187 0.187 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.181 0.187 0.185 0.000 0.181 0.177 0.000 0.181 0.181 0.174 0.000 0.181	Bodhare et al. 2010	SUI	0.057	0.040	0.080	15.285-	0.000	
Den et al. SUI 0.100 0.100 0.202 20.21 0.200 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	Brieger et al.	SUI	0.070	0.054	0.090	18.888-	0.000	
Choo et al. SUI 0.229 0.227 0.253 18.413 0.000 Careia Prez et al. SUI 0.104 0.189 0.162 2.23.766 0.000 Careia Prez et al. SUI 0.118 0.113 2.13.53 0.000 Jamay Tanet al. SUI 0.298 0.868 0.113 2.73.53 0.000 Jamay Tanet al. SUI 0.047 0.442 0.058 4.83.44 0.000 Jamay Tanet al. SUI 0.041 0.047 0.442 0.050 4.83.44 0.000 Lie et al. SUI 0.118 0.114 0.127 7.527.0 0.000 Liu et al. SUI 0.140 0.133 0.149 4.84.28 0.000 Careita al. SUI 0.016 0.039 9.354 0.000 Careita al. SUI 0.016 0.029 9.454 0.000 Careita al. SUI 0.016 0.029 9.372 0.000 Careital. S	Cayan 2016	SUI	0.047	0.036	0.060	22.201-	0.000	
El-Azob et al. SUI 0.448 0.132 0.668 22828- 0.000 Carcia Agence al. SUI 0.449 0.429 0.118 0.141 33401- 0.000 Hermachande et al. SUI 0.231 0.215 0.249 24.850- 0.000 Jaing Yan et al. 2016 SUI 0.231 0.215 0.249 24.850- 0.000 Jaing Yan et al. 2016 SUI 0.231 0.215 0.249 24.850- 0.000 Jaing Yan et al. 2016 SUI 0.031 0.039 1327.353- 0.000 Lee et al. SUI 0.044 0.049 0.084 17.970- 0.000 Lee et al. SUI 0.014 0.133 0.1078 45.280- 0.000 Carcia Jenze SUI 0.014 0.133 0.1078 45.280- 0.000 Carcia Jenze SUI 0.014 0.133 0.1078 45.280- 0.000 Lei Zanng et al. SUI 0.013 0.039 0.334 10.798- 0.000 Carcia Jenze SUI 0.013 0.003 0.348 10.798- 0.000 Muncai et al. SUI 0.013 0.006 0.072 28.123- 0.000 Carcia Jenze SUI 0.013 0.003 0.348 10.798- 0.000 Muncai et al. SUI 0.013 0.010 0.155 17.486- 0.000 Muncai et al. SUI 0.013 0.010 0.155 17.486- 0.000 Paring et al. SUI 0.013 0.010 0.155 17.486- 0.000 Paring et al. SUI 0.013 0.010 0.155 17.486- 0.000 Paring et al. SUI 0.013 0.018 0.157 7.1486- 0.000 Paring et al. SUI 0.012 0.015 0.022 39.742- 0.000 Chur et al. SUI 0.018 0.156 17.748- 0.000 Paring et al. SUI 0.018 0.157 7.1776- 0.000 Paring et al. SUI 0.018 0.156 17.77 4.1107- 0.000 Paring et al. SUI 0.018 0.0177 1.1777 0.000 Paring et al. SUI 0.018 0.0177 1.1777 0.000 Paring et al. SUI 0.018 0.0177 1.777 0.000 Paring et al. SUI 0.018 0.0177 1.777 1.725- 0.000 Paring et al. SUI 0.018 0.0177 1.777 0.000 Paring et al. SUI 0.018 0.0177 1.777 0.000 Paring et al. SUI 0.018 0.0177 1.777 0.000 Paring et al. SUI 0.023 0.013 0.029 13.204 0.000 Paring et al. SUI 0.026 0.027 0.273 2.2254 0.000 Paring et al. SUI 0.028 0.017 0.027 2.2254 0.000 Paring et al. SUI 0.018 0.127 0.177 13.224 0.000 Paring et al. SUI 0.018 0.0127 0.072 2.2354 0.000 Paring et al. SUI 0.018 0.0127 0.072 2.2354 0.000 Paring et al. SUI 0.018 0.0127 0.072 2.2354 0.000 Paring et al. SUI 0.018 0.0128 0.027 2.2354 0.000 Paring et al. SUI 0.018 0.0128 0.027 2.2354 0.000 Paring et al. SUI 0.016 0.0172 0.017 2.2372 0.0000 Paring et al. SUI 0.006 0.024 0.0			0.180					
Garcia A, SUI 0.04 0.089 0.122 23.766- 0.000 Hemachandm et al. SUI 0.029 0.116 0.113 27.333- 0.000 Judrix ot al. SUI 0.021 0.025 42.850- 0.000 Judrix ot al. SUI 0.041 0.042 0.055 45.324- 0.000 Judrix ot al. SUI 0.044 0.042 0.055 75.324- 0.000 Lie et al. SUI 0.046 0.049 0.060 1.0750- 0.000 Lie at al. SUI 0.140 0.131 0.149 46.28- 0.000 Manoni et al. SUI 0.012 0.000 0.022 37.42- 0.000 Churd tal. SUI 0.012 0.026 0.027 28.12- 0.000 Churd tal. SUI 0.110 0.028 0.717 1.18 0.000 Churd tal. SUI 0.100 0.028 0.113 1.18 0.000 Churd tal. SUI 0.110 0.018 0.117 1.1072- 0.000								
Ge et al. SU II 0.129 0.118 0.141 35401- 0.000 Jiang Yan et al. 2016 SU II 0.231 0.215 0.239 24850- 0.000 John et al. 2016 SU II 0.231 0.215 0.239 24850- 0.000 Juinad 2017 SU II 0.047 0.042 0.053 45.34- 0.000 Lei Zamg et al. 2006 SU II 0.180 0.157 75270- 0.000 Lei Zamg et al. 301 0.018 0.157 75270- 0.000 Menonai et al. SU II 0.160 0.158 0.158 75270- 0.000 Caredopan et al. SU II 0.023 0.039 0.344 10786- 0.000 Caredopan et al. SU II 0.018 0.158 17.496- 0.000 Caredopan et al. SU II 0.108 0.158 17.496- 0.000 Dram et al. SU II 0.169 0.377 14.177- 0.000 Shrui et al. SU II 0.168 0.376 0.247 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Hemschandmei ral. SUU 0.068 0.085 0.113 27.353. 0.000 Judito 2016 SU 0.215 0.215 0.245 0.262 24.850. 0.000 Judito 2017 SUU 0.044 0.042 0.025 45.324. 0.000 Lee et al. SUU 0.014 0.125 75.270. 0.000 Lee et al. SUU 0.140 0.131 0.149 44.282. 0.000 Magnatinave tal. SUU 0.014 0.013 0.149 44.282. 0.000 Magnatinave tal. SUU 0.012 0.005 0.022 9.545. 0.000 Chur et al. SUU 0.012 0.005 0.022 9.545. 0.000 Chur et al. SUU 0.013 0.018 0.138 16.345. 0.000 Chur et al. SUU 0.013 0.018 0.138 16.345. 0.000 Pang et al. SUU 0.013 0.018 0.138 16.345. 0.000 Pang et al. SUU 0.010 0.088 0.138 16.345. 0.000 Pang et al. SUU 0.110 0.088 0.138 17.77 4. 0.000 Were et al. SUU 0.110 0.088 0.138 17.77 4. 0.000 Pang et al. SUU 0.161 0.144 0.180 24.141. 0.000 Pang et al. SUU 0.161 0.144 0.180 24.141. 0.000 Pang et al. SUU 0.166 0.167 0.177 4.1107. 0.000 Pang et al. SUU 0.168 0.177 4.1107. 0.000 Pang et al. SUU 0.168 0.177 4.1107. 0.000 Pang et al. SUU 0.228 0.216 0.227 2.238. 0.000 Pang et al. SUU 0.228 0.216 0.217 0.178 17.725. 0.000 Pang et al. SUU 0.228 0.216 0.217 0.178 17.725. 0.000 Pang et al. SUU 0.228 0.216 0.217 0.178 17.725. 0.000 Pang et al. SUU 0.228 0.216 0.217 0.178 17.725. 0.000 Pang et al. SUU 0.228 0.216 0.227 2.238. 0.000 Pang et al. SUU 0.228 0.216 0.227 2.238. 0.000 Pang et al. SUU 0.228 0.216 0.227 2.238. 0.000 Pang et al. SUU 0.228 0.012 0.177 4.1107. 0.000 Pang et al. SUU 0.016 0.012 0.027 19.322. 0.000 Pang et al. SUU 0.016 0.012 0.027 19.322. 0.000 Pang et al. SUU 0.016 0.012 0.027 19.322. 0.000 Pang et al. SUU 0.016 0.013 0.028 79.422. 0.000 Pang et al. SUU 0.016 0.013 0.028 79.422. 0.000 Pang et al. SUU 0.016 0.013 0.028 79.422. 0.000 Pang et al. SUU 0.006 0.024 0.027 79.223 0.000 Pang et al. SUU 0.006 0.024 0.027 79.223 0.000 Pang et al. SUU 0.								
Jang Yan et al. 2016 0.01 0.231 0.215 0.246 24 850. 0.000 Juliato 2017 SU 0.064 0.049 0.058 45 334. 0.000 Luie 2017 SU 0.064 0.049 0.058 45 334. 0.000 Lei Zhang et al. 2006 SU 0.119 0.114 0.125 75 270. 0.000 Menonal et al. SU 0.139 0.136 0.137 785. 0.000 Megatiaw et al. SU 0.060 0.052 9.545. 0.000 Correctopen et al. SU 0.060 0.072 28.128. 0.000 Correctopen et al. SU 0.069 0.072 28.128. 0.000 Correctopen et al. SU 0.101 0.188 153.45 0.000 Correctopen et al. SU 0.101 0.184 11777. 0.000 Stati 0.199 0.377 11473. 0.000 0.000 Stati 0.129 0.271 23.14 0.400<								
John Cortai SUI 0.047 0.042 0.053 45.324 0.000 Lee etal. SUI 0.141 0.127 75270- 0.000 Lie etal. SUI 0.149 0.114 0.127 75270- 0.000 Lie etal. SUI 0.149 0.131 0.146 44.428- 0.000 Memoral etal. SUI 0.012 0.038 10.376 0.000 Memoral etal. SUI 0.012 0.0384 10.786 0.000 Gergbade etal. SUI 0.012 0.028 93.742 0.000 Ourset al. SUI 0.113 0.186 17.496 0.000 Paring tal. SUI 0.113 0.186 17.496 0.000 Paring tal. SUI 0.110 0.186 17.477 0.000 Paring tal. SUI 0.168 0.177 11.410 0.170 0.181 10.477 0.000 Paring tal. SUI 0.168 0.177 11.1								
Juliato 2017 SUI 0.044 0.049 0.044 1.970-0 0.000 Lei Zhang et al 2006 SUI 0.189 0.114 0.127 7520-0 0.000 Lei Zhang et al 2006 SUI 0.189 0.140 0.131 0.127 75266-0.000 Menomal et al. SUI 0.019 0.229 9.545-0.000 0.000 Menomal et al. SUI 0.012 0.005 0.072 28.129-0.000 Qengbede et al. SUI 0.028 0.93742 0.000 Churd al. SUI 0.013 0.168 0.178 1.6345-0.000 Caretogan et al. SUI 0.101 0.018 0.178 1.972-0.000 Pating et al. SUI 0.113 0.116 0.148 1.077 0.000 Pang et al. SUI 0.116 0.148 1.017 0.000 0.000 Pang et al. SUI 0.118 0.116 1.077 1.077 0.000 Zhu Lon et al. SUI 0.128 0.231 3.000 0.000 0.000 0.000 0.000 0.000 0.000								
Lee et al. SUI 0.119 0.114 0.125 75270- 0.000 Liu et al. SUI 0.149 0.131 0.149 44.28- 0.000 Megabiave et al. SUI 0.140 0.131 0.149 44.28- 0.000 Megabiave et al. SUI 0.012 0.005 0.029 9.545- 0.000 Correct al. SUI 0.013 0.018 0.133 15.345- 0.000 Correct al. SUI 0.0110 0.028 0.133 15.345- 0.000 Correct al. SUI 0.0110 0.028 0.133 15.25- 0.000 Correct al. SUI 0.110 0.018 0.133 15.25- 0.000 Correct al. SUI 0.110 0.018 0.133 15.25- 0.000 Correct al. SUI 0.110 0.108 0.133 15.25- 0.000 Correct al. SUI 0.110 0.108 0.133 15.25- 0.000 Correct al. SUI 0.110 0.108 0.113 17.77- 0.000 Shadi et al. SUI 0.116 0.144 0.110 0.184 17.77- 0.000 Correct al. SUI 0.161 0.144 0.110 0.184 17.77- 0.000 Correct al. SUI 0.161 0.144 0.110 0.028 0.113 15.25- 0.000 Correct al. SUI 0.129 0.077 0.154 10.473- 0.000 Correct al. SUI 0.129 0.077 0.154 10.473- 0.000 Correct al. SUI 0.129 0.071 0.154 10.473- 0.000 Correct al. SUI 0.129 0.072 0.154 16.0458 0.200 Correct al. SUI 0.127 0.176 17.725- 0.000 Correct al. SUI 0.127 0.176 17.725- 0.000 Correct al. SUI 0.127 0.176 17.725- 0.000 Correct al. SUI 0.028 0.013 0.039 13.234- 0.000 Correct al. SUI 0.028 0.013 0.039 13.234- 0.000 Correct al. SUI 0.016 0.052 0.027 0.037 2.720- 0.000 Correct al. SUI 0.016 0.052 0.022 2.2306- 0.000 Correct al. SUI 0.016 0.022 0.022 2.2306- 0.000 Liabriap.Foretal. UI 0.016 0.0127 0.028 73.525- 0.000 Correct al. SUI 0.016 0.0127 0.028 73.525- 0.000 Correct al. SUI 0.016 0.012 0.022 2.2306- 0.000 Liabriap.Foretal. UI 0.016 0.0126 0.022 2.23								
Lei Zang et al. 2006 SUI 0.189 0.183 0.195 78.586- 0.000 0.000 0.000 0.000 0.229 0.244 10.786- 0.000 0.000 0.229 0.244 10.786- 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.229 0.245 0.000 0.245 0.250 0.229 0.245 0.000 0.245 0.250 0.229 0.245 0.000 0.245 0.250								
Lu et al. SUI 0.140 0.131 0.149 46.428 0.000 Memorial et al. SUI 0.012 0.005 0.284 10.786 0.000 Memorial et al. SUI 0.012 0.005 0.022 9.545 0.000 Memorial et al. SUI 0.023 0.019 0.022 8.742 0.000 Memorial et al. SUI 0.023 0.019 0.022 8.742 0.000 Memorial et al. SUI 0.111 0.086 0.166 17.496 0.000 Memorial et al. SUI 0.110 0.080 0.166 17.496 0.000 Memorial et al. SUI 0.110 0.080 0.166 17.496 0.000 Memorial et al. SUI 0.110 0.080 0.166 0.166 17.496 0.000 Memorial et al. SUI 0.110 0.080 0.166 0.166 17.496 0.000 Memorial et al. SUI 0.110 0.080 0.113 31322 0.000 Memorial et al. SUI 0.114 0.160 0.114 1.1777 0.000 Memorial et al. SUI 0.114 0.161 0.144 1.1777 0.000 Memorial et al. SUI 0.161 0.144 0.168 24.141 0.000 Memorial et al. SUI 0.161 0.144 0.168 24.141 0.000 Memorial et al. SUI 0.199 0.077 0.154 10.473 0.000 Memorial et al. SUI 0.166 0.166 0.166 0.177 4.1107 0.000 Memorial et al. SUI 0.199 0.077 0.154 10.473 0.000 Memorial et al. SUI 0.166 0.166 0.177 4.1107 0.000 Memorial et al. SUI 0.229 0.218 0.241 38.858 0.000 Memorial et al. SUI 0.229 0.218 0.241 38.858 0.000 Memorial et al. SUI 0.126 0.103 0.154 16.409 0.000 Memorial et al. SUI 0.126 0.103 0.154 16.409 0.000 Memorial et al. SUI 0.018 0.157 0.1774 1.177 0.000 Memorial et al. SUI 0.126 0.103 0.127 0.176 17.725 0.0000 Memorial et al. SUI 0.018 0.157 0.1774 1.7275 0.0000 Memorial et al. SUI 0.018 0.157 0.0127 0.176 17.725 0.0000 Memorial et al. SUI 0.013 0.023 0.022 2.238 0.0000 Memorial et al. SUI 0.013 0.023 0.022 2.135 0.0000 Memorial et al. SUI 0.013 0.023 0.022 2.135 0.0000 Memorial et al. SUI 0.013 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.015 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 2.135 0.0000 Memorial et al. SUI 0.0116 0.012 0.022 11037 0.0000 Memorial et al. SUI 0.0116 0.0								
Minomia et al. SUI 0.336 0.399 0.384 10.766 0.000 Megabiave et al. SUI 0.012 0.005 0.022 9.545 0.000 Chur et al. SUI 0.023 0.545 0.000 0.000 Chur et al. SUI 0.023 0.572 28.129 0.000 Chur et al. SUI 0.040 0.440 0.440 0.440 0.000 Chur et al. SUI 0.111 0.028 0.572 28.129 0.000 Chur et al. SUI 0.111 0.028 0.156 17.496 0.000 Partingia et al. SUI 0.101 0.184 11.777 0.000 Toam et al. SUI 0.169 0.77 14.107 0.000 Wu er al. SUI 0.228 0.221 0.000 0.000 Zhu pet al. SUI 0.228 0.228 0.000 0.000 Zhu pet al. SUI 0.229 0.133 0.029 0.	-							
Maine et al. SUI Occol Org2 28.129- Occol Orar et al. SUI Oc23 O/9 O/2 S/9 O/0 Carrotogan et al. SUI O/12 O/13 16.345- O/00 O/0 Paring et al. SUI O/11 0.088 0.138 16.345- O/00 O/0 Paring et al. SUI O/11 0.088 0.133 17.48- O/00 O/0 Paring et al. SUI O/143 O/10 0.148 17.77- O/00 O/0 Tozan et al. SUI O/169 0.77 0.154 10.473- O/00 O/0 Taran et al. SUI O/264 0.247 0.282 2.281- 0.000 O/0 Zhu et al. SUI O/264 0.247 0.282 0.238- 0.000 O/0 Zhu et al. SUI O/264 0.247 0.282 0.238- 0.000 O/0 O/0 Poled prevalencc 0								
Openpbede et al. SUI 0.023 0.019 0.022 39.742 0.000 Chur et al. SUI 0.460 0.441 3.812 0.000 Carnotgan et al. SUI 0.111 0.088 0.158 16.345 0.000 Partingia et al. SUI 0.110 0.164 1.77486 0.000 0 Shrui et al. SUI 0.116 0.144 1180 2.14141 0.000 0 Shrui et al. SUI 0.166 0.777 0.154 10.473 0.000 0 Worg et al. SUI 0.168 0.157 1.177 1.000 0 0 Zhang et al. SUI 0.168 0.277 0.154 10.473 0.000 0 Zhuan et al. SUI 0.284 0.247 7.282 2.2381 0.000 0 0.000 0 Zhuan et al. SUI 0.229 0.218 0.241 86.88 0.000 0 0 0.000 0 0 0 0.000 0 0 0 0 0.000	Megabiaw et al.	SUI	0.012	0.005	0.029	9.545-	0.000	
Courted al. SUI 0.460 0.440 0.481 3.812 0.000 Cardogan et al. SUI 0.111 0.058 0.138 1.545 0.000 Pathinia et al. SUI 0.110 0.186 0.156 17.496 0.000 Pathinia et al. SUI 0.110 0.186 1.7496 0.000 Tozan et al. SUI 0.116 0.144 0.1180 24.141 0.000 Worg et al. SUI 0.166 0.156 0.177 1.177 0.000 Zhang et al. SUI 0.468 0.367 0.450 4.251 0.000 Wu er al. SUI 0.2624 0.247 0.863 0.000 0.000 Zhang et al. SUI 0.229 0.218 0.241 36.863 0.000 0.000 Pocled prevalence 0.103 0.127 0.176 17.725 0.000 0.000 0.000 Edvare et al. U.U 0.165 0.129 2.1336 0.000	Mourad et al	SUI	0.060	0.050	0.072	28.129-	0.000	
Cardogan et al. SUI 0.111 0.088 0.138 16.345 0.000 Partinija et al. SUI 0.130 0.168 0.158 17.486 0.000 Pathinija et al. SUI 0.100 0.089 0.113 31.982 0.000 Shrut et al. SUI 0.144 0.110 0.164 11.777 0.000 Tozun et al. SUI 0.161 0.164 0.180 24.141 0.000 Terrer et al. SUI 0.161 0.166 0.177 4.251 0.000 Wur et al. SUI 0.264 0.247 0.282 22.361 0.000 Pooled prevalence Bochare et al. 2010 UUI 0.264 0.247 0.282 22.381 0.000 Pooled prevalence Bochare et al. 2010 UUI 0.229 0.218 0.241 36.898 0.000 Pooled prevalence Bochare et al. 2010 UUI 0.023 0.013 0.039 13.204 0.000 El-Azab et al. UUI 0.016 0.156 0.177 11.077 0.000 Chen et al. UUI 0.013 0.023 0.032 0.133 0.000 Pooled prevalence Bochare et al. 2010 UUI 0.023 0.013 0.039 13.204 0.000 El-Azab et al. UUI 0.016 0.165 0.209 20.333 0.000 Pooled prevalence Bochare et al. 2010 UUI 0.023 0.013 0.039 13.204 0.000 El-Azab et al. UUI 0.018 0.012 0.027 2.3065 0.000 John ot al UUI 0.018 0.018 0.012 0.007 2.2000 Chen et al. UUI 0.018 0.018 0.012 0.007 2.2000 Chen et al. UUI 0.018 0.018 0.001 0.002 El-Azab et al. UUI 0.018 0.018 0.001 0.000 El-Azab et al. UUI 0.018 0.013 0.022 2.9005 0.000 John ot al UUI 0.018 0.013 0.022 3.9005 0.000 John ot al UUI 0.018 0.012 0.022 2.9005 0.000 John ot al UUI 0.018 0.013 0.022 3.9005 0.000 Le et al. UUI 0.018 0.013 0.022 3.9005 0.000 John ot al UUI 0.018 0.013 0.022 3.9005 0.000 John ot al UUI 0.018 0.013 0.022 3.9005 0.000 John ot al UUI 0.018 0.012 0.022 1.938-0.000 Le et al. UUI 0.018 0.013 0.022 3.9005 0.000 John ot al UUI 0.026 0.024 0.228 73.529 0.000 John ot al UUI 0.019 0.017 0.013 0.022 1.938-0.000 Le et al. UUI 0.019 0.017 0.013 0.222 9.005 0.000 Doc te al. UUI 0.018 0.012 0.022 2.9334 0.000 John ot al UUI 0.026 0.024 0.228 73.529 0.000 John ot al UUI 0.026 0.024 0.228 73.529 0.000 Le et al. UUI 0.016 0.0013 0.022 1.9374 0.000 Doc te al. UUI 0.010 0.006 0.013 3.2333 0.000 Doc te al. UUI 0.010 0.006 0.013 3.2334 0.000 Doc te al. UUI 0.010 0.006 0.013 0.2334 0.000 Doc te al. UUI 0.010 0.006 0.033 4.2334 0.000 Doc te al. UUI 0.026 0.024 0.	Ojengbede et al.	SUI	0.023	0.019	0.028	39.742-	0.000	
Pang ef al. SUI 0.130 0.108 0.156 17.486 0.000 Pathingia et al. SUI 0.100 0.089 0.113 31.982- 0.000 Shufi et al. SUI 0.141 0.110 0.144 11.777- 0.000 Tacan et al. SUI 0.141 0.140 0.143 1.077- 0.540 Tacan et al. SUI 0.166 0.177 0.154 1.0473 0.000 Worg et al. SUI 0.247 0.282 2.2361- 0.000 Zang et al. SUI 0.268 0.247 0.282 2.2361- 0.000 Poled prevalence 0.128 0.1168 0.1177 41.107- 0.000 Poled prevalence 0.128 0.120 0.127 0.176 17.725- 0.000 Ponet al. UI 0.150 0.127 0.176 17.725- 0.000 0.000 Chenet al. UI 0.168 0.142 0.171 0.120 0.021 0.033- 0.000 0.000 0.000 0.012 0.022 0.000 0	Onur et al.	SUI	0.460	0.440	0.481	3.812-	0.000	
Partingia et al. SUI 0.000 0.089 0.113 31982 0.000 Shudi et al. SUI 0.143 0.110 0.184 11.777- 0.000 Tozun et al. SUI 0.161 0.144 0.180 24.141 0.000 Worg et al. SUI 0.166 0.156 0.177 41.107 0.000 Zhang et al. SUI 0.248 0.247 0.282 22.361 0.000 Wu er al. SUI 0.248 0.247 0.282 22.361 0.000 Poled prevalence 0.128 0.103 0.154 16.409 0.000 Poled prevalence 0.128 0.103 0.154 0.150 0.127 0.176 17.725 0.000 Choo et al. ULI 0.018 0.165 0.209 20.333 0.000 Poled prevalence 0.100 0.019 0.017 0.022 25.284 0.000 Jaiang Yan et al.2016 ULI 0.016 0.012 0.022 25.284 0.000 Jaiang Yan et al.2016 ULI 0.019 0.017 0.021 62.297. 0.000 Lee et al. ULI 0.019 0.017 0.021 62.297. 0.000 Lee et al. ULI 0.019 0.017 0.021 62.297. 0.000 Parg et al.2006 ULI 0.026 0.024 0.028 79.422. 0.000 Parg et al. ULI 0.010 0.008 0.033 2.1351. 0.000 Parg et al. ULI 0.010 0.008 0.033 2.233. 0.000 Parg et al. ULI 0.010 0.008 0.033 2.233. 0.000 Parg et al. ULI 0.010 0.008 0.033 4.2287. 0.000 Parg et al. ULI 0.010 0.008 0.033 4.2287. 0.000 Parg et al. ULI 0.010 0.008 0.034 0.228 79.422. 0.000 Parg et al. ULI 0.010 0.008 0.034 0.228 79.422. 0.000 Parg et al. ULI 0.010 0.008 0.03	Ozerdogan et al.		0.111			16.345-	0.000	
Shulet al. SUI 0.143 0.110 0.144 11.777. 0.000 Tozan et al. SUI 0.161 0.144 0.180 24.141. 0.000 Tseng et al. SUI 0.109 0.077 0.154 10.473 0.000 Wuer al. SUI 0.247 0.282 22.381. 0.000 Zhug et al. SUI 0.229 0.218 0.241 0.387 0.6858. 0.000 Poled prevalence 0.126 0.133 0.154 16.409. 0.000 Poled prevalence 0.126 0.133 0.039 13.204. 0.000 Poled prevalence 0.127 0.166 0.177 15.167 17.725. 0.000 Breger et al. UI 0.165 0.127 0.176 17.725. 0.000 Chen et al. UI 0.161 0.012 0.022 20.033 0.000 0.000 Edwabe tal. UI 0.160 0.027 19.322. 0.000 0.000 0.001 0.022 29.005. 0.000 0.000 0.014 0.012 <								
Tozan et al. SUI 0.161 0.144 0.180 24.141. 0.000 Tseng et al. SUI 0.109 0.077 0.154 10.473. 0.000 Wong et al. SUI 0.284 0.287 0.480 4.281 0.000 Wue ral. SUI 0.284 0.247 0.382 22.381 0.000 Zhang et al. SUI 0.229 0.218 0.241 36.898 0.000 Pooled prevalence 0.120 0.13 0.154 16.409 0.000 Breiger et al. DUI 0.127 0.176 17.725 0.000 Chern et al. UI 0.130 0.039 13.204 0.000 Chern et al. UI 0.160 0.172 0.176 17.725 0.000 Chern et al. UI 0.186 0.162 0.299 20.333 0.000 Chern et al. UI 0.118 0.122 1.536 0.000 0.000 Garcia-Prezz et al. UI 0.013 0.022 29.005 0.000 0.000 Jiang Yan	,							
Tseng et al. SUI 0.109 0.077 0.154 10.473. 0.000 Wung et al. SUI 0.408 0.367 0.450 4.251. 0.000 Zhang et al. SUI 0.264 0.247 0.228 22.381. 0.000 Zhang et al. SUI 0.166 0.177 41.107. 0.000 Poled prevalence 0.126 0.103 0.139 13.204. 0.000 Poled prevalence 0.126 0.103 0.139 13.204. 0.000 Brieger et al. UU 0.150 0.127 0.176 17.725. 0.000 Choo et al. UU 0.163 0.163 0.177 9.333. 0.000 Edware et al. 2010 UU 0.160 0.134 0.188 25.174. 0.000 Choo et al. UU 0.017 0.013 0.022 25.284. 0.000 Jiang Yan et al. 2016 UU 0.016 0.022 25.284. 0.000 0.001 Julata 2017 UU 0.078 0.024 0.282 79.529. 0.000 0.00								
Wong et al. SUI 0.000 0.367 0.450 4.291 0.000 Wue rai. SUI 0.284 0.247 0.282 22.381- 0.000 Zhang et al. SUI 0.286 0.577 7.41.077 0.000 ZHU Lan et al. SUI 0.229 0.218 0.241 36.858- 0.000 Pooled prevalence 0.126 0.103 0.154 16.409- 0.000 Bridger et al. UL 0.150 0.127 0.176 17.725- 0.000 Chen et al. UL 0.180 0.165 0.202 0.000 0.000 Chen et al. UL 0.013 0.023 0.042 21.536- 0.000 Garcia-Preszet al. UL 0.018 0.012 0.022 25.284 0.000 Jaing Yan et al. UL 0.018 0.012 0.022 25.284 0.000 Joina Voit et al. UL 0.016 0.028 79.422 0.000 0.001 Jaing Yan et al. 0.006 0.024 0.028 79.422 0.000 0.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Wu eral. SUI 0.284 0.247 0.282 22.361- 0.000 Zhu Lan et al. SUI 0.166 0.156 0.177 41.107- 0.000 Pooled prevalence 0.126 0.130 0.154 16.409- 0.000 Bochare et al. 2010 0.012 0.023 0.039 13.204- 0.000 Bridger et al. UUI 0.150 0.127 0.176 17.725- 0.000 Chen et al. UUI 0.031 0.039 13.204- 0.000 Chen et al. UUI 0.160 0.127 0.176 17.725- 0.000 Chen et al. UUI 0.031 0.022 0.032 0.042 21.536- 0.000 Chen et al. UUI 0.016 0.127 0.176 17.725- 0.000 Garcia-Perez et al. UUI 0.018 0.012 0.022 25.244 0.000 0.000 Jiang Yan et al. UUI 0.016 0.0122 25.244 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.000								
2hang et al. SUI 0.166 0.156 0.177 41.107- 0.000 2HU Lan et al. SUI 0.229 0.218 0.241 36.858- 0.000 Pooled prevalence Bochare et al. 2010 0.126 0.103 0.154 16.409- 0.000 Brieger et al. UUI 0.126 0.176 17.725- 0.000 Chen et al. UUI 0.186 0.165 0.209 20.33- 0.000 Chen et al. UUI 0.186 0.172 0.176 17.725- 0.000 Chen et al. UUI 0.186 0.174 0.018 2.1536- 0.000 Garcia-Perezet al. UUI 0.018 0.012 0.022 29.005- 0.000 Jaing Yan et al. 2016 UI 0.016 0.012 0.022 29.005- 0.000 Jaing Yan et al. UUI 0.017 0.021 62.227- 0.000 0.000 Jaing Yan et al. UUI 0.026 0.024 0.028 79.462- 0.000 Juialo 2017 UUI <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-							
ZHULan et al. SUI 0.229 0.218 0.241 36.858- 0.000 Pooled prevalence 0.126 0.103 0.154 16.409- 0.000 Bodnare et al. CUI 0.127 0.176 17.725- 0.000 Ohen et al. UI 0.150 0.127 0.176 17.725- 0.000 Cheo et al. UI 0.031 0.029 20.33- 0.000 Cheo et al. UI 0.018 0.022 25.000 0.000 Garcia-Perezet al. UI 0.011 0.013 0.022 29.005- 0.000 Garcia-Perezet al. UI 0.016 0.012 0.022 25.284- 0.000 Johio et al. UI 0.017 0.016 0.022 25.287- 0.000 Johio et al. UI 0.0178 0.026 0.024 0.028 79.529- 0.000 Juliab 2017 UI 0.026 0.024 0.028 79.529- 0.000 Lie et al. UI 0.010 0.026 0.024 0.028 79.529- 0.000								
Pooled prevalence 0.126 0.103 0.154 16.409- 0.000 Brieger et al. 0.11 0.023 0.013 0.039 13.204- 0.000 Brieger et al. 0.11 0.150 0.127 0.176 17.725- 0.000 Chen et al. 0.01 0.013 0.029 20.33- 0.000 EAxab et al. 0.01 0.013 0.022 20.33- 0.000 Garcia-Perez et al. 0.01 0.012 0.027 19.322 0.000 Garcia-Perez et al. 0.01 0.017 0.012 0.022 25.284- 0.000 Jaing Yan et al. 2016 0.01 0.012 0.022 25.284- 0.000 0.000 Juliato 2017 0.01 0.016 0.012 0.028 7.482- 0.000 0.000 Lie Zhang et al. 0.01 0.026 0.024 0.028 7.482- 0.000 0.001 Lie Zhang et al. 0.01 0.026 0.024 0.028 7.482- 0.000 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
Bochare et al. 2010 UU 0.023 0.013 0.039 13.204- 0.000 Brieger et al. UU 0.156 0.127 0.176 17.725- 0.000 Chen et al. UU 0.186 0.165 0.209 20.333- 0.000 Choo et al. UU 0.018 0.122 21.536- 0.000 El-Azab et al. UU 0.018 0.012 0.227 19.322- 0.000 Garcia-Perezet al. UU 0.016 0.012 0.022 29.005- 0.000 Jang Yan et al. 2016 UU 0.016 0.012 0.022 29.005- 0.000 Jokio et al UU 0.016 0.012 0.022 29.005- 0.000 Jokio et al UU 0.017 0.013 0.022 29.005- 0.000 Juliato 2017 UU 0.061 0.100 18.127- 0.000 0.000 Lie ztang et al. UU 0.026 0.024 0.028 79.422- 0.000 Liu et al. UU 0.026 0.035 43.708- 0.000								
Brieger et al. UI 0.150 0.127 0.176 17.725 0.000 Chen et al. UI 0.186 0.203 20.333 0.000 Choo et al. UI 0.031 0.022 20.333 0.000 El-Azab et al. UI 0.150 0.134 0.168 25.174 0.000 Garcia-Perez et al. UI 0.017 0.013 0.022 29.005 0.000 Jaing Yan et al. 2016 UI 0.016 0.012 0.022 25.284 0.000 Juliato 2017 UI 0.078 0.061 1.000 18.127 0.000 Lee et al. UI 0.017 0.021 62.297 0.000 11.11 0.026 0.024 0.028 79.452 0.000 Lie Zhang et al. 2006 UI 0.026 0.024 0.028 79.452 0.000 11.11 11.01 0.030 0.026 3.3708 0.000 11.11 11.01 0.030 0.25 3.333 0.000 11.11 11.01 0.031 2.333 0.000 11.11 11.11 11.11 </th <th>Pooled prevalence</th> <th>e</th> <th>0.120</th> <th>0.100</th> <th>0.104</th> <th>10.400-</th> <th>0.000</th> <th></th>	Pooled prevalence	e	0.120	0.100	0.104	10.400-	0.000	
Brieger et al. UI 0.150 0.127 0.176 17.725 0.000 Chen et al. UI 0.186 0.203 20.333 0.000 Choo et al. UI 0.031 0.022 20.333 0.000 El-Azab et al. UI 0.150 0.134 0.168 25.174 0.000 Garcia-Perez et al. UI 0.017 0.013 0.022 29.005 0.000 Jaing Yan et al. 2016 UI 0.016 0.012 0.022 25.284 0.000 Juliato 2017 UI 0.078 0.061 1.000 18.127 0.000 Lee et al. UI 0.017 0.021 62.297 0.000 11.11 0.026 0.024 0.028 79.452 0.000 Lie Zhang et al. 2006 UI 0.026 0.024 0.028 79.452 0.000 11.11 11.01 0.030 0.026 3.3708 0.000 11.11 11.01 0.030 0.25 3.333 0.000 11.11 11.01 0.031 2.333 0.000 11.11 11.11 11.11 </td <td>Bodhare et al. 2010</td> <td></td> <td>0.023</td> <td>0.013</td> <td>0.039</td> <td>13 204-</td> <td>0.000</td> <td>· · · · ·</td>	Bodhare et al. 2010		0.023	0.013	0.039	13 204-	0.000	· · · · ·
Chen et al. UU 0.186 0.185 0.209 20.333 0.000 Choo et al. UU 0.031 0.023 0.042 21.536 0.000 EA-zab et al. UU 0.150 0.134 0.168 25.174 0.000 Garcia-Perez et al. UU 0.018 0.012 0.027 19.322 0.000 Garcia-Perez et al. UU 0.017 0.013 0.022 20.55 0.000 Jiang Yan et al. 2016 UU 0.016 0.012 0.022 25.284 0.000 Jokhio et al UU 0.017 0.021 62.277 0.000 0.001 Lee et al. UU 0.078 0.061 0.100 18.127 0.000 Lee et al. UU 0.026 0.024 0.28 79.462 0.000 Li 2010 et al. UU 0.026 0.024 3.378 3.370 0.000 Manonai et al. UU 0.010 0.026 9.037 0.000 0.000 Orar et al. UU 0.010 0.041 0.450 6.656 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
El-Azab et al. UU 0.150 0.134 0.168 25.174 0.000 Garcia-Perez et al. UU 0.018 0.012 0.027 19.322- 0.000 Ge et al. UU 0.017 0.013 0.022 25.084- 0.000 Jaing Yan et al. 2016 UU 0.017 0.013 0.022 25.284- 0.000 Juliato 2017 UU 0.078 0.061 0.100 18.127- 0.000 Lee et al. UU 0.026 0.024 0.028 79.462- 0.000 Li 2010 et al. UU 0.026 0.024 0.028 79.462- 0.000 Liu et al. UU 0.030 0.026 0.035 43.708- 0.000 Liu et al. UU 0.030 0.026 9.087- 0.000 0.000 Menonai et al. UU 0.010 0.026 9.087- 0.000 0.000 Ogenbede et al. UU 0.010 0.033 16.504- 0.000 0.000 Pang et al. UU 0.015 0.131 0.183 16								
Garcia-Perez et al. UU 0.018 0.012 0.027 19.322- 0.000 Ge et al. UU 0.017 0.013 0.022 25.284- 0.000 Julang Yan et al. 2016 UU 0.032 0.027 0.037 42.702- 0.000 Juliato 2017 UU 0.078 0.061 0.100 18.127- 0.000 Lee et al. UU 0.026 0.024 0.028 79.462- 0.000 Lie 2nang et al. 2006 UU 0.026 0.024 0.028 79.529- 0.000 Liu et al. UU 0.010 0.035 43.708- 0.000 0.000 Manonai et al. UU 0.010 0.004 0.026 9.087- 0.000 0.000 Megabiaw et al. UU 0.010 0.004 0.026 9.087- 0.000 0.	Choo et al.	UUI	0.031	0.023	0.042	21.536-	0.000	
Ge et al. UI 0.017 0.013 0.022 29.005 0.000 Jiang Yan et al. 2016 UI 0.016 0.012 0.022 25.2044 0.000 Juliato 2017 UI 0.032 0.027 0.037 42.702 0.000 Juliato 2017 UI 0.038 0.061 0.100 18.127- 0.000 Lee et al. UI 0.026 0.024 0.028 79.462- 0.000 Lei Zhang et al. 2006 UI 0.026 0.024 79.529- 0.000 0.000 Liu et al. UI 0.010 0.026 0.035 43.708- 0.000 0.000 Manonai et al. UI 0.010 0.008 0.013 32.333- 0.000 0.000 Megabiawetal. UI 0.010 0.008 0.013 32.333- 0.000 0.000 0.000 Qiengbede et al. UI 0.010 0.053 0.093 16.504- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	LIT LOD OT OIL							
Lee et al. UU 0.019 0.017 0.021 62.297- 0.000 Lei Zhang et al. 2006 UU 0.026 0.024 0.028 79.462- 0.000 Li 2010 et al. UU 0.026 0.024 0.028 79.529- 0.000 Liu et al. UU 0.030 0.026 0.035 43.708- 0.000 Manonai et al. UU 0.010 0.004 0.026 9.987- 0.000 Qiengbede et al. UU 0.010 0.004 0.026 9.087- 0.000 Orardogan et al. UU 0.010 0.008 0.013 32.333- 0.000 Caerdogan et al. UU 0.150 0.131 0.138 16.504- 0.000 Pang et al. UU 0.156 0.142 0.171 29.723- 0.000 Shuti et al. UU 0.082 0.072 0.099 26.384- 0.000 Shuti et al. UU 0.086 0.072 0.099 26.384- 0.000 Toseng et al. UU 0.086 0.072 0.299								
Lee et al. UU 0.019 0.017 0.021 62.297- 0.000 Lei Zhang et al. 2006 UU 0.026 0.024 0.028 79.462- 0.000 Li 2010 et al. UU 0.026 0.024 0.028 79.529- 0.000 Liu et al. UU 0.030 0.026 0.035 43.708- 0.000 Manonai et al. UU 0.010 0.004 0.026 9.987- 0.000 Qiengbede et al. UU 0.010 0.004 0.026 9.087- 0.000 Orardogan et al. UU 0.010 0.008 0.013 32.333- 0.000 Caerdogan et al. UU 0.150 0.131 0.138 16.504- 0.000 Pang et al. UU 0.156 0.142 0.171 29.723- 0.000 Shuti et al. UU 0.082 0.072 0.099 26.384- 0.000 Shuti et al. UU 0.086 0.072 0.099 26.384- 0.000 Toseng et al. UU 0.086 0.072 0.299								
Lee et al. UU 0.019 0.017 0.021 62.297- 0.000 Lei Zhang et al. 2006 UU 0.026 0.024 0.028 79.462- 0.000 Li 2010 et al. UU 0.026 0.024 0.028 79.529- 0.000 Liu et al. UU 0.030 0.026 0.035 43.708- 0.000 Manonai et al. UU 0.010 0.004 0.026 9.987- 0.000 Qiengbede et al. UU 0.010 0.004 0.026 9.087- 0.000 Orardogan et al. UU 0.010 0.008 0.013 32.333- 0.000 Caerdogan et al. UU 0.150 0.131 0.138 16.504- 0.000 Pang et al. UU 0.156 0.142 0.171 29.723- 0.000 Shuti et al. UU 0.082 0.072 0.099 26.384- 0.000 Shuti et al. UU 0.086 0.072 0.099 26.384- 0.000 Toseng et al. UU 0.086 0.072 0.299								
Lee et al. UUI 0.019 0.017 0.021 62.297- 0.000 Lei Zhang et al. 2006 UUI 0.026 0.024 0.028 79.622- 0.000 Li 2010 et al. UUI 0.030 0.026 0.035 43.708- 0.000 Liu et al. UUI 0.010 0.004 0.026 9.037- 0.000 Manonai et al. UUI 0.010 0.004 0.026 9.037- 0.000 Qiengbede et al. UUI 0.010 0.004 0.026 9.087- 0.000 Qiengbede et al. UUI 0.010 0.004 0.026 9.087- 0.000 Caerdogan et al. UUI 0.070 0.533 0.033 16.504- 0.000 Pang et al. UUI 0.156 0.142 0.171 29.723- 0.000 Shuti et al. UUI 0.082 0.072 0.099 26.384- 0.000 Shuti et al. UUI 0.086 0.072 0.099 26.384- 0.000 Tozan et al. UUI 0.086 0.072 0.27.49								
Manonai et al. UU 0.110 0.093 0.130 21.951- 0.000 . Megabiaw et al. UU 0.010 0.004 0.026 9.087- 0.000 Qiengbede et al. UU 0.010 0.008 0.013 32.333- 0.000 Orur et al. UU 0.430 0.410 0.450 6.656- 0.000 Qaerdogan et al. UU 0.070 0.053 0.093 16.504- 0.000 Pang et al. UU 0.156 0.1142 0.171 29.723- 0.000 Pathiraja et al. UU 0.068 0.072 0.099 26.384- 0.000 Tozun et al. UU 0.065 0.072 0.099 26.384- 0.000 Wong et al. UU 0.066 0.042 0.104 10.530- 0.000 Wu er al. UU 0.014 0.025 26.642- 0.000 Image: et al.								
Manonai et al. UU 0.110 0.093 0.130 21.951- 0.000 . Megabiaw et al. UU 0.010 0.004 0.026 9.087- 0.000 Qiengbede et al. UU 0.010 0.008 0.013 32.333- 0.000 Orur et al. UU 0.430 0.410 0.450 6.656- 0.000 Qaerdogan et al. UU 0.070 0.053 0.093 16.504- 0.000 Pang et al. UU 0.156 0.1142 0.171 29.723- 0.000 Pathiraja et al. UU 0.068 0.072 0.099 26.384- 0.000 Tozun et al. UU 0.065 0.072 0.099 26.384- 0.000 Wong et al. UU 0.066 0.042 0.104 10.530- 0.000 Wu er al. UU 0.014 0.025 26.642- 0.000 Image: et al.	Lei Zhang et al. 2006	UUI	0.026	0.024	0.028	79.462-	0.000	
Manonai et al. UU 0.110 0.093 0.130 21.951- 0.000 . Megabiaw et al. UU 0.010 0.004 0.026 9.087- 0.000 Qiengbede et al. UU 0.010 0.008 0.013 32.333- 0.000 Orur et al. UU 0.430 0.410 0.450 6.656- 0.000 Qaerdogan et al. UU 0.070 0.053 0.093 16.504- 0.000 Pang et al. UU 0.156 0.1142 0.171 29.723- 0.000 Pathiraja et al. UU 0.068 0.072 0.099 26.384- 0.000 Tozun et al. UU 0.065 0.072 0.099 26.384- 0.000 Wong et al. UU 0.066 0.042 0.104 10.530- 0.000 Wu er al. UU 0.014 0.025 26.642- 0.000 Image: et al.								
Megabiaw et al. UUI 0.010 0.004 0.026 9.087- 0.000 Qengbede et al. UUI 0.010 0.008 0.013 32.333- 0.000 Onur et al. UUI 0.430 0.410 0.450 6.656- 0.000 Caerdogan et al. UUI 0.070 0.053 0.093 16.504- 0.000 Pang et al. UUI 0.155 0.131 0.183 16.797- 0.000 Pathriaja et al. UUI 0.156 0.142 0.171 29.723- 0.000 Tozan et al. UUI 0.082 0.058 0.116 12.451- 0.000 Tozan et al. UUI 0.085 0.072 0.099 26.384- 0.000 Wong et al. UUI 0.086 0.042 0.104 12.749- 0.000 Wu er al. UUI 0.090 0.142 0.272 0.000 Image tal. Image tal								
Qiengbede et al. UUI 0.010 0.008 0.013 32.333 0.000 Onur et al. UUI 0.430 0.410 0.450 6.656 0.000 Ozerdogan et al. UUI 0.070 0.053 0.093 16.504 0.000 Pang et al. UUI 0.155 0.131 0.183 16.797 0.000 Pathiraja et al. UUI 0.156 0.142 0.171 29.723 0.000 Shruti et al. UUI 0.082 0.058 0.116 12.451- 0.000 Tozun et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wu er al. UUI 0.092 0.127 0.299 26.384- 0.000 Wu er al. UUI 0.066 0.042 0.104 10.530- 0.000 Wu er al. UUI 0.014 0.025 26.642- 0.000 Image tal. Zhang et al. UUI 0.100 0.922 0.109 45.113- 0.000 Image tal. Image tal. Zhunet al. UUI 0.028								2 ⊥■
Onuret al. UU 0.430 0.410 0.450 6.656- 0.000 Caretogan et al. UU 0.070 0.053 0.093 16.504- 0.000 Pang et al. UU 0.155 0.131 0.183 16.797- 0.000 Pathiraja et al. UU 0.155 0.131 0.183 16.797- 0.000 Shuti et al. UU 0.168 0.171 29.723- 0.000 Image: Comparison of the comparis								
Ozerdogan et al. UUI 0.070 0.053 0.093 16.504 0.000 Pang et al. UUI 0.155 0.131 0.183 16.579- 0.000 Pathiraja et al. UUI 0.156 0.142 0.171 29.723- 0.000 Shruti et al. UUI 0.082 0.058 0.116 12.451- 0.000 Tozun et al. UUI 0.085 0.072 0.099 26.384- 0.000 Wong et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wu er al. UUI 0.014 0.025 26.642- 0.000 Image: table ta								
Pang et al. UUI 0.155 0.131 0.183 16.797- 0.000 Pathiraja et al. UUI 0.156 0.142 0.171 29.723- 0.000 Shruti et al. UUI 0.082 0.058 0.116 12.451- 0.000 Tozun et al. UUI 0.086 0.072 0.099 26.384- 0.000 Wong et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wu er al. UUI 0.014 0.025 26.642- 0.000 Zhang et al. UUI 0.100 0.092 0.109 45.113- 0.000 Zhuan et al. UUI 0.024 0.033 42.283- 0.000 Image: tal.								
Shruti et al. UUI 0.082 0.058 0.116 12.451- 0.000 Tozun et al. UUI 0.085 0.072 0.099 26.384- 0.000 Tseng et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wong et al. UUI 0.204 0.172 0.204 12.749- 0.000 Wu er al. UUI 0.019 0.014 0.025 26.642- 0.000 Image: Constraint of the state of the sta								
Tozun et al. UUI 0.085 0.072 0.099 26.384- 0.000 Tseng et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wong et al. UUI 0.204 0.172 0.204 12.749- 0.000 Wu er al. UUI 0.014 0.025 26.642- 0.000 Image: table								
Tseng et al. UUI 0.066 0.042 0.104 10.530- 0.000 Wong et al. UUI 0.204 0.172 0.240 12.749- 0.000 Wu er al. UUI 0.014 0.025 26.642- 0.000 Image: table t								
Wong et al. UUI 0.204 0.172 0.240 12.749- 0.000 Wu er al. UUI 0.019 0.014 0.025 26.642- 0.000 Zhang et al. UUI 0.100 0.092 0.109 45.113- 0.000 ZHU Lan et al. UUI 0.028 0.024 0.033 42.283- 0.000								
Wu er al. UUI 0.019 0.014 0.025 26.642- 0.000 Zhang et al. UUI 0.100 0.922 0.109 45.113- 0.000 ZHU Lan et al. UUI 0.028 0.024 0.033 42.283- 0.000								
Zhang et al. UUI 0.100 0.092 0.109 45.113- 0.000 ZHULan et al. UUI 0.028 0.024 0.033 42.283- 0.000 0053 0.034 0.0383 11.918- 0.000 Image: Constraint of the second s								
ZHU Lan et al. UUI 0.028 0.024 0.033 42.283- 0.000								
0.053 0.034 0.083 11.918- 0.000								
	Pooléd prevalénce	2	0.053	0.034	0.083	11.918-	0.000	

FIGURE 5 Prevalence rates for subtypes of urinary incontinence using random-effects analysis: stress urinary incontinence (SUI) 12.6% (95% confidence interval 10.3-15.4), urgency urinary incontinence (UUI) 5.3% (95% confidence interval 3.4-8.3) and mixed urinary incontinence (MUI) 9.1% (95% confidence interval 7.0-11.8)

our analysis but the pattern of distribution is not completely symmetric. This could have been caused by a publication bias or methodological flaw. We did not exclude any of these studies and performed subgroup analyses because only one study⁴³ was totally out of distribution (Figure 3).

Prevalence of UI 3.5

The prevalence rates of the individual studies and the total prevalence of UI is shown in Figure 4. In the fixed method analysis, prevalence of UI was 29.4% (95% CI: 29.1-29.6) but I^2 was more than 50% which demonstrates

Beurourology_WILEY

Pooled prevalenc	æ	0.091	0.070	0.118	15.430-	0.000	-1.00	-0.50	0.00	0.50	 1.00
2HU Lan et al.	MUI	0.124	0.115	0.133	46.559-	0.000					
/ueral.	MUI	0.069	0.060	0.080	32.632-	0.000					
Vong et al.	MUI	0.159	0.131	0.192	14.154-	0.000					
seng et al.	MUI	0.063	0.039	0.100	10.488-	0.000				-	
ozun et al.	MUI	0.249	0.228	0.271	19.012-	0.000			- E •		
arniraja et al. hruti et al.	MUI	0.030	0.201	0.054	11.141-	0.000					
ang et al. athiraja et al.	MUI	0.299	0.277	0.345	18.926-	0.000					
Dzerdogan et al. Pang et al.	MUI MUI	0.077	0.008	0.100 0.343	16.553- 10.178-	0.000					
ijengbede et al.	MJI	0.006	0.004	0.009	27.907-	0.000			Ter 1		
Aburad et al.	MUI	0.120	0.106	0.136	27.871-	0.000				1	
legabiaw et al.	MUI	0.056	0.037	0.083	12.908-	0.000					
fanonai et al.	MJI	0.081	0.066	0.098	22.236-	0.000				1	
iu et al.	MUI	0.063	0.057	0.070	48.345-	0.000				1	
i 2010 et al.	MJI	0.094	0.090	0.098	91.199-	0.000				1	
ei Zhang et al. 2006		0.094	0.090	0.098	91.122-	0.000					
ee et al.	MJI	0.102	0.097	0.107	76.470-	0.000					
uliato 2017	MJI	0.095	0.076	0.118	18.088-	0.000					
okhio et al	MUI	0.028	0.024	0.033	41.643-	0.000					
iang Yan et al. 2016		0.030	0.024	0.038	29.080-	0.000			_		
Ge et al.	MJI	0.075	0.066	0.085	36.593-	0.000					
arcia-Perez et al.	MUI	0.572	0.545	0.599	5.188	0.000					
El-Azab et al.	MUI	0.250	0.230	0.271	19.335-	0.000					
choo et al.	MUI	0.149	0.131	0.169	22.397-	0.000					
chen et al.	MUI	0.171	0.151	0.193	21.038-	0.000					
Cayan 2016	MUI	0.018	0.011	0.027	18.425-	0.000					
brieger et al.	MUI	0.140	0.118	0.165	18.026-	0.000					
odhare et al. 2010	MUI	0.020	0.011	0.036	12.801-	0.000					

FIGURE 5 Continued

high heterogeneity of the studies. We therefore used the random effect model here and for all additional analyses that showed an overall UI prevalence of 25.7% (95% CI: 22.3-29.5). The prevalence of different UI types was 12.6% (95% CI: 10.3-15.4), 5.3% (95% CI: 3.4-8.3), and 9.1% (95% CI: 7.0-11.8) for SUI, UUI, and MUI, respectively (Figure 5).

3.6 | Prevalence of UI without elderly women

The prevalence of UI significantly increases with age.² However, we could not perform the age-based analysis for our patient groups because this data was unavailable in the literature. For this reason, we performed a subgroup analysis after excluding studies focussing on the elderly population in the title or text (n = 6). This analysis showed that the total UI prevalence only changed slightly to 26.2% (95%CI: 22.6–30.2; Figure 6).

3.7 | Prevalence of UI based on the definition of incontinence

There are several definitions for UI that may influence the prevalence. The prevalence of UI for any involuntary loss of urine independent on the time period was 25.5% (95% CI:

18.5-34.2; Figure 7). When UI was defined as involuntary loss of urine in the last 4 weeks, the prevalence rate was 33.4% (95% CI: 29.5-37.5). However, when UI was defined as involuntary loss of urine during the last 3 months, the prevalence rate was 41.2% (95% CI: 18.4-68.5), whereas the prevalence rate of any involuntary loss of urine during the last year was 15.6% (95% CI: 10.9-21.8).

3.8 | Prevalence of UI according to the study quality

To demonstrate the effects of the study quality on data pooling, we divided the retrieved studies according to their methodological quality. The UI prevalence was 28.2% (95% CI: 24.0-32.9), 19.4% (95% CI: 15.0-24.8), and 21.8% (95% CI: 11.1-38.3) for studies with high, medium, and low quality, respectively (Figure 8).

3.9 | Prevalence of UI according to the use of validated vs nonvalidated questionnaires

The methods to assess the prevalence of UI varied widely. Only approximately half of the studies (55.5%) utilized validated questionnaires (n = 30). For this reason, we analyzed the prevalence of UI according to the use of validated or

Study name		Statist	ics for ea	ch study			E	vent rate and 95%	CI	
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Ahmadietal.	0.384	0.351	0.418	6.501-	0.000	T	T I			
Amaro et al.	0.270	0.238	0.305	11.557-	0.000					
Bodhare et al.	0.100	0.078	0.128	15.487-	0.000					
Castro et al.	0.480	0.441	0.520	0.987-	0.324				-	
Cayan et al.	0.146	0.127	0.167	21.758-	0.000					
Chen et al.	0.537	0.509	0.564	2.617	0.009					
Choi et al.	0.238	0.203	0.277	11.081-	0.000					
Choo et al.	0.408	0.382	0.435	6.604-	0.000					
El-Azab et al.	0.548	0.524	0.572	3.896	0.000					
Garcia-Perez et al.	0.184	0.164	0.206	20.865-	0.000					
Ge et al.	0.221	0.207	0.236	28.907-	0.000					
Hajebrahimi et al.	0.236	0.196	0.281	9.788-	0.000					
Hornge et al.	0.220	0.208	0.232	35.795-	0.000					
Islam et al.	0.237	0.217	0.259	19.825-	0.000					
Javadfar et al.	0.577	0.555	0.598	6.860	0.000					
Jiang Yan et al.	0.277	0.259	0.295	21.068-	0.000					
Jokhio et al.	0.115	0.107	0.124	46.327-	0.000					
Juliato et al.	0.236	0.207	0.268	13.652-	0.000					
Kwon and Lee	0.079	0.074	0.084	65.826-	0.000				_	
Lee et al.	0.244	0.237	0.251	56.400-	0.000					
Lei Zhang et al.	0.319	0.312	0.326	48.712-	0.000					
Liet al	0.309	0.302	0.316	51.293-	0.000					
Liu et al.	0.233	0.222	0.244	37.125-	0.000					
Ma	0.340	0.293	0.390	5.978-	0.000				-	
Manonaietal.	0.365	0.337	0.394	8.945-	0.000					
Megabiaw et al.	0.078	0.055	0.109	13.164-	0.000					
Menezes et al.	0.156	0.123	0.196	12.020-	0.000				_	
Mikou et al.	0.271	0.244	0.299	13.909-	0.000					
Mourad et al.	0.230	0.211	0.250	21.889-	0.000					
Nobrega et al.	0.175	0.128	0.235	8.201-	0.000			L =		
Ojengbede et al.	0.028	0.024	0.033	41.383-	0.000					
Onur et al.	0.463	0.443	0.484	3.526-	0.000					
Ozerdogan et al.	0.258	0.225	0.294	11.555-	0.000					
Pathiraja et al.	0.555	0.535	0.575	5.326	0.000					
Santos et al.	0.329	0.281	0.381	6.193-	0.000			- I -	.=	
Shruti et al.	0.255	0.212	0.303	8.780-	0.000					
Stones et al.	0.062	0.054	0.071	36.769-	0.000				T	
Tozun et al.	0.495	0.470	0.520	0.398-	0.691					
Velazquez Magna et al.	0.465	0.359	0.574	0.626-	0.532					
Wueral.	0.352	0.333	0.371	14.420-	0.000					
ZHU Lan et al.	0.385	0.372	0.398	16.468-	0.000					
ooled prevalence	0.262	0.226	0.302	10.313-	0.000	1	1		● I	
						-1.00	-0.50	0.00	0.50	

FIGURE 6 Prevalence of urinary incontinence excluding elderly women using random-effects analysis

nonvalidated questionnaires. In the studies with validated questionnaires, the prevalence rate of UI 23.5% (95% CI: 19.4-28.1). In contrast, the prevalence rate was 27.7% (95% CI: 22.6-33.4) in studies that used nonvalidated questionnaires.

3.10 | Prevalence of UI according to geographical region

Included studies were also analyzed according to their geographical origin (Figure 9):

- Eastern Asian and Pacific region: 25.6% (95% CI: 21.4-30.2)
- South Asia: 14.2% (95% CI: 6.1-29.8)
- Europe and Central Asia: 32.2% (95% CI: 18.9-49.15)
- Middle East and North Africa: 37.3% (95% CI: 25.8-50.5)
- Sub-Saharan region: 4.6% (95% CI: 1.7-12.3)
- Latin America: 28.8% (95% CI: 22.2-36.4).

In large population studies in individual regions or countries, the prevalence rate of UI was 18.9% (95% CI: 14.4-24.3). In contrast, the prevalence of UI was 28.8% (95% CI: 24.4-33.5) when only a small population sample was investigated. The results of all subgroup analyses are summarized in Table 2.

4 | DISCUSSION

Our systematic review and meta-analysis is the first comprehensive report of UI prevalence rates in the developing world. Our analysis demonstrates that approximately 26% of the adult female population in developing countries has UI. However, more accurate prevalence data is difficult to retrieve from the epidemiologic literature since striking differences exist among the studies in terms of methodology, definitions of UI and

17

Study name	Subgroup within study	s	tatistics	for eac	h study_			Ever	nt rate and 95	% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Ahmadi et al. 2007	Any involuntary loss of urine	0.384	0.351	0.418		0.000	1	1	1	I	1
Amaro et al. 2009	Any involuntary loss of urine	0.270	0.238	0.305		0.000					
Bodhare et al. 2010	Any involuntary loss of urine	0.100	0.078	0.128		0.000				1	
Castro El-Azab et al. 2007	Any involuntary loss of urine Any involuntary loss of urine	0.480 0.548	0.441 0.524	0.520		0.324 0.000				- 1 -1	
Hajebrahimi et al. 1990		0.236	0.196			0.000				в Г.	
Hsieh et al. 1999	Any involuntary loss of urine	0.298	0.276	0.322	15.264-	0.000					
Juliato 2017	Any involuntary loss of urine	0.236	0.207	0.268		0.000			'		
Kim 2017 Kwon and Lee 2007-20	Any involuntary loss of urine Any involuntary loss of urine	0.075	0.069	0.082		0.000					
Lee et al. 2005	Any involuntary loss of urine	0.244	0.237	0.251		0.000					
Ma 1997	Any involuntary loss of urine	0.340	0.293			0.000					
Marques L. M et al. 20 Menezes et al. 2003	09-2010 Any involuntary loss of urine	0.294	0.273			0.000					
Menezes et al. 2003 Mohd Sidik	Any involuntary loss of urine Any involuntary loss of urine	0.107	0.066	0.133	6.828	0.000					- -
Nobrega et al. 2013	Any involuntary loss of urine	0.175	0.128	0.235		0.000				F	. Т.
Gengbede et al. 2009		0.028	0.024	0.033		0.000					
Onur et al. 2009	Any involuntary loss of urine	0.463	0.443			0.000				_ •	
	10-2011 Any involuntary loss of urine	0.255 0.216	0.212	0.303 0.254		0.000					
Tseng et al. 1997 Pooled prevalence	Any involuntary loss of urine	0.216	0.102	0.234		0.000					
		0.200							,	- 1	
Cayan 2016	Involuntary loss of urine in the last 4 we	eks 0.146	0.127	0.167	21.758-	0.000	T	I		L L	T
Chen et al. 2003	Involuntary loss of urine in the last 4 we		0.509	0.564		0.009					
Choo et al. 2003	Involuntary loss of urine in the last 4 we		0.382	0.435	6.604-	0.000					
Ge et al. 2009	Involuntary loss of urine in the last 4 we	eks 0.221	0.207	0.236	28.907-	0.000					
Islam et al. 2013-2014	Involuntary loss of urine in the last 4 we	eks 0.237	0.217	0.259	19.825-	0.000					
Javadfar et al. 2018	Involuntary loss of urine in the last 4 we		0.555			0.000				~ 문	
Jiang Yan et al. 2016	Involuntary loss of urine in the last 4 we		0.259	0.295		0.000				그는 것이 같이 많이	
Lei Zhang et al. 2006 Li 2010 et al.	Involuntary loss of urine in the last 4 we		0.312			0.000				Ē L	
Li 2010 et al. Liu et al. 2010-2012	Involuntary loss of urine in the last 4 we Involuntary loss of urine in the last 4 we		0.302			0.000					
Manonai et al. 2003-2004			0.337	0.394		0.000					
Mkou et al 2001	Involuntary loss of urine in the last 4 we		0.244	0.299		0.000					
Ozerdogan et al. 2003	Involuntary loss of urine in the last 4 we		0.225	0.294	11.555-	0.000				- 1	
Tozun et al. 2007	Involuntary loss of urine in the last 4 we	eks 0.495	0.470	0.520	0.398-	0.691					
	006Involuntary loss of urine in the last 4 we		0.359	0.574		0.532				- E	
Wu er al. 2009	Involuntary loss of urine in the last 4 we		0.333			0.000				Ē	
Yu 2007	Involuntary loss of urine in the last 4 we		0.301	0.369		0.000					
ZHU Lan et al. 2005 Pooled prevalence	Involuntary loss of urine in the last 4 we	eks 0.385 0.334	0.372			0.000	1			♦	
Pooled prevalence		0.004	0.2.00	0.070	1.000	0.000					
Pathiraia et al. 2015-201	6 Involuntary loss of urine in the last 3 mo	nths 0.55	5 0.53	5 0.57	75 5.32	. 0.000	1	1	T.		1
amanini et al. 2010	Involuntary loss of urine in the last 3 mo									- E.	
Pooled prevalence	un en	0.412	2 0.18	4 0.68	35 0.61	5- 0.539					-
	untary loss of urine in the last 6 months	0.238	0.203	0.277	11.081-	0.000					
Pooled prevalence		0.238	0.203	0.277	11.081-	0.000				♦	
Carcia Daraz et al. 2005	Involuntary loss of urine in the last year	0.184	0.164	0.206	20.865	0.000	1	1			1
Jarcia-Perez et al. 2003 Homge et al. 2005	i Involuntary loss of urine in the last year Involuntary loss of urine in the last year		0.164 0.208	0.206	20.865- 35.795-	0.000					
Aegabiaw et al. 2012	Involuntary loss of urine in the last year		0.055	0.109	13.164-	0.000				-	
Pooled prevalence	,,, ,,, ,		0.109	0.218	8.060-	0.000			- -		
Eshkoor et al. 2015	Not defined	0.040	0.030	0.052	21.620-	0.000	1	T		1	I
Jokhio et al. 2012	Not defined	0.115	0.107	0.124	46.327-	0.000					
Mourad et al.	Not defined	0.270	0.250	0.291	19.008-	0.000					
Santos et al. 2007-2008 Stones et al. 2003	Not defined	0.201	0.169	0.238	12.599-	0.000					
ooled prevalence	Not defined	0.062	0.054	0.071	36.769- 5.756	0.000					
		0.113	0.060	0.205	5.756-	0.000	1	I	1 🖝	1	I
							-1.00	-0.50	0.00	0.50	1.00

FIGURE 7 Prevalence of urinary incontinence (UI) based on its definition using random-effects analysis. Some studies defined UI as any involuntary loss of urine, whereas other studies defined incontinence as involuntary loss of urine during the last 4 weeks, 3 months, or 12 months. However, some studies did not define the recall period for UI

Studyname	Subgroup within study	_	Statis	tics for e	ach study	_	Event rate and 95% Cl
		Event rate	Lower	Upper limit	7-Value	p-Value	
Bodhare et al.	High quality	0.100	0.078		15.487-	0.000	
Cayan et al.	High quality	0.146	0.127	0.167	21.758-	0.000	
Chen et al.	High quality	0.537	0.509	0.564	2617	0.009	
B-Azabetal.	High quality	0.548	0.524		3.896	0.000	
Garcia-Perez et al.	High quality	0.184	0.164			0.000	
Geetal. Islametal.	High quality	0.221	0.207	0.236	28.907- 19.825-	0.000	
Juliato	High quality High quality	0.236	0.207		13.652-	0.000	
LeiZhang et al.	High quality	0.244	0.237	0.251	56.400-	0.000	
Liuetal.	High quality	0.319	0.312		48.712-	0.000	
Li Lin et al.	High quality	0.309	0.302	0.316	51.293-	0.000	
Marques L. M. et al.	High quality	0.365	0.337		8.945-	0.000	
Onur et al.	High quality	0.028	0.024			0.000	
Pang	High quality	0.258	0.225		11.555-	0.000	
Pu-linetal.	High quality	0.555	0.535		5.326	0.000	
Shrufietal. Tozun etal.	High quality High quality	0.201	0.169 0.470		12.599- 0.398-	0.000	
Velazquez Magna et		0.465	0.359		0.626-	0.532	
Wueral.	Highquality	0.352	0.333		14.420-	0.000	
Yu 2007	High quality	0.334	0.301		8.883-	0.000	
ZHU Lan et al.	High quality	0.385	0.372		16.468-	0.000	
Pooled prevalen	ice	0.282	0.240	0.329	8.316-	0.000	Ⅰ │ │ ♦ Ⅰ Ⅰ
Ahmadi et al.	Medumquality	0.384	0.361	Q.418	6.501-	0.000	
Ameroetal.	Mediumquality	0.270	0.238	0.305	11.557-	0.000	
Castroet al.	Medumquality	0.480	0.441	0.520	0.987-	0.324	
Chooetal.	Mediumquality	0.408	0.382	0.435	6.604-	0.000	
Eshkooretal.	Medumquality	0.040	0.030	0.052	21.620-	0.000	
Hajebrahimi et al.	Medumquality	0.236	0.198	0.281	9.788-	0.000	
Homgeetal.	Medumquality	0.220	0.208	0.232	36,795-	0.000	
Hsiehetal	Medumquality	0.298	0.276	0.322	15.264	0.000	
Jiang Yan et al.	Medumquality	0.277	0.259	0.295	21.068-	0.000	
Johnio et al.	Medumquality	0.115	0.107	0.124	46.327- 50.948-	0.000	
Kwon and Lee Leeetal	Medumquality Medumquality	0.075 0.079	0.069	0.082	65.826-	0.000	
Maetal	Medumquality	0.233	0.222	0.244	37.125	0.000	
Manunaietal.	Medumquality	0.340	0.293	0.390	5.978-	0.000	
Megabiawetal.	Medumquality	0.294	0.273	0.316	16,480-	0.000	
Mahad Sidik	Medumquality	0.271	0244	0.299	13,909-	0.000	
Mourad, et al	Medumquality	0,990	0.964	0.997	6.828	0.000	
Gengbede et al.	Medumquality	0.175	0.128	0.235	8201-	0.000	
Ozerologan et al.	Medumquality	0.463	0.443	0.494	3.526-	0.000	
Santos et al.	Medumquality	0.255	0.212	0.303	8.780-	0.000	
Stones et al.	Medumquality	0.062	0.054	0.071	36,769-	0.000	
Tamanini et al.	Medumquality	0.282	0.254	0.311	12,982-	0.000	
Pooled preivale	nce	0.250	0.191	0.320	6.272-	0.000	
Choi et al.	Low quality						
	I max munitite a				11.081-	0.000	
	Law and the			0.598	6.860	0.000	
					13.164- 18.911	0.000	
					16.811-	0.000	
•					19.008-	0.000	
Tseng et al.					11.910-	0.000	
Pooled prevale	ence	0.218	0.111	0.383	3.119-	0.002	
							-1.00 -0.50 0.00 0.50 1.00

FIGURE 8 Prevalence of incontinence according to the study quality using random-effects analysis. Publications with quantitative data were selected for assessment of the methodological validity before inclusion in the review by using standardized critical appraisal instruments from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) (Supporting Information Appendix 2). Selected studies were categorized into three groups based on the score of each study. A total score of less than 80% was defined as high quality, a score between 60% and 80% as medium quality and a score less than 60% as low quality

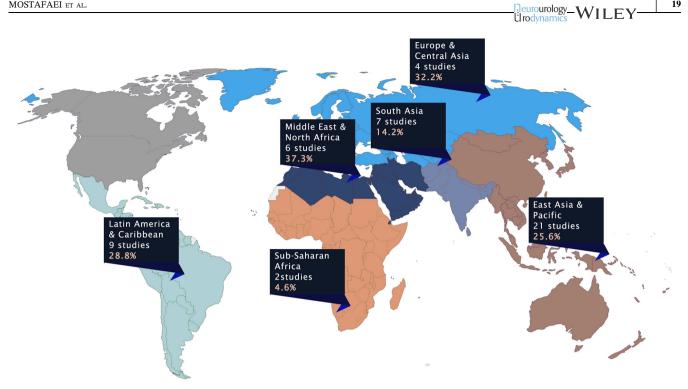


FIGURE 9 Urinary incontinence prevalence rates based on studies in different geographical locations

populations that together limit the calculation of more accurate estimates. The heterogeneity between the studies prevented additional calculations but our results still provide some important insights into the parameters that influence the UI prevalence in the developing world.

The prevalence rate of SUI (12.6%) was higher than the prevalence rates of MUI (9.1%) or UUI (5.3%). Most strikingly, the prevalence of MUI in the developing world is almost two-fold higher than for UUI. Contradictory data appeared when comparing the prevalence rates for the recall periods of 3 months (41.2%) and 12 months (15.6%). Patients may have overestimated the frequency of UI during the shorter recall period or forgotten urinary leakage episodes during a longer recall period, especially in women with infrequent or less severe UI. In the present analysis, we did not have any time restriction of the published literature. Therefore, it is also possible that more recently published studies demonstrate a higher prevalence of UI due to greater awareness and reporting.

In our meta-analysis of 54 studies, heterogeneity in the fixed method model was high. Nevertheless, the heterogeneity in a meta-analysis of clinical trials should be small because all included studies estimate the same condition for a similar population in one region.⁷⁴ However, this heterogeneity is still possible due to differences in study populations, measurement methods, and possible cultural differences, especially when effects are measured by applying patient-reported outcomes.⁷⁵ Because of the high heterogeneity of the studies, we performed random-effect analyses for the main results and subgroups. It is arguable whether random-effect analyses are more suitable because different studies may measure different items in epidemiological studies.⁷⁶ The situation is different when results are pooled from several epidemiological studies. Here different studies definitely measure different things. There is no way of controlling for all possible confounders and, therefore, substantial heterogeneity can be expected.⁷⁴

In the current meta-analysis, the funnel plot was not symmetric for the selected studies and, therefore, some kind of publication bias or methodological effect is likely. Inadequate response rate can also cause an asymmetric funnel plot. In other words, we cannot see a uniform methodology and assessment tool for screening and diagnosing UI across the studies.

The difficult task in the interpretation of the metaanalysis results, despite its purely statistical tool nature, is to draw general conclusions for the real world based on analyses in the theoretical world in which all models are correct and all prerequisites are fulfilled.²³ The majority of the included studies were conducted in Eastern Asia and the Pacific region and only a few studies were carried out in Sub-Saharan Africa. The high number of studies in a highly populated country like China^{45,50-52,58,66-70,72} is plausible but the high number of studies in less populated countries like Turkey^{28,44,47,62} may influence the overall outcome of the meta-analysis. This appears to be important because ethnicity can influence the prevalence

TABLE 2	Summary of subgroup analyses for urinary
incontinence i	the developing countries

	Event rate								
Variables	Random- effect analysis % (95% CI)	Fixed method model % (95% CI)							
Total UI prevalence	25.7%	29.4%							
SUI	(22.3-29.5) 12.6%	(29.1-29.6) 17.3%							
UUI	(10.3-15.4) 5.3% (3.4-8.3)	(17.0-17.6) 7.6% (7.4-7.8)							
MUI	9.1% (7.0-11.8)	12.1% (11.8-12.3)							
UI prevalence without elderly women	26.2% (22.6-30.2)	29.3% (29.1-29.6)							
UI prevalence based on its definition									
Any involuntary loss of urine	25.5% (18.5-34.2)	23.4% (22.9-23.8)							
Involuntary loss of urine in the last 4 wk	33.4% (29.5-37.5)	32.5% (32.2-32.9)							
Involuntary loss of urine in the last 3 mo	41.2% (18.4-68.5)	48.3% (46.6-50.1)							
Involuntary loss of urine in the last year	15.6% (10.9-21.8)	20.7% (19.7-21.7)							
UI prevalence based on study quality									
High quality	28.2% (24.0-32.9) 25.0%	31.5% (31.1-31.8) 21.6%							
Medium quality Low quality	23.0% (19.1-32.0) 21.8%	(21.2-22.0) 36.3%							
1 2	(11.1-38.3)	(34.9-37.7)							
UI prevalence based on questionnaire type									
Validated	23.5% (19.4-28.1)	27.7% (27.4-28.0)							
Nonvalidated	27.7% (22.6-33.4)	34.0% (33.5-34.6)							
UI prevalence based on geographical location									
East Asia and Pacific	25.6% (21.4-30.2)	27.5% (27.3-27.8)							
South Asia	14.2% (6.1-29.8)	26.3% (25.3-27.2)							
Europe and Central Asia	32.2% (18.9-49.1)	40.3% (38.9-41.6)							

TABLE 2 (Continued)

	Event rate						
	Random- effect analysis	Fixed method model					
Variables	% (95% CI)	% (95% CI)					
Middle East and North	37.3%	42.8%					
Africa	(25.8-50.5)	(41.6-43.9)					
Sub-Sahara	4.6%	3.4%					
	(1.7-12.3)	(2.9-3.9)					
Latin America	28.8%	29.8%					
	(22.2-36.4)	(28.5-31.0)					

Results of both the random-effect analysis, which were used throughout the articles, and the fixed method model are provided.

Abbreviations: MUI, mixed urinary incontinence; SUI, stress urinary incontinence; UI, urinary incontinence; UUI, urgency urinary incontinence; 95% CI, 95% confidence interval.

and type of UI.^{34,52} The highest prevalence of UI, with more than 37% of population affected, was seen in Middle East and North Africa as well as in Europe and Central Asia, whereas the lowest prevalence rate was seen in Sub-Saharan countries. These variations in the prevalence rates of UI confirm that the region with different cultures and races influences results.^{1-3,77} Other explanation for the geographical differences is its impact on social activities and responsibilities in different cultures and regions. Embarrassment, shame, lack of trust to the health system as well as the lack of knowledge and understanding of incontinence as a disease decrease the help seeking behavior in the patients. Thus, some patients rather hide their condition and others might consider it a natural process of aging.78 Different definitions of UI complicate the calculations and produce heterogeneous data.^{79,80} For example, the UI prevalence rate of UI ranged from 12% to 53% with a mean of 35.1% in the study of Diokno et al. In this study, the authors defined UI as urinary leakage at 6 or more days during the last 12 months.⁸¹ When UI was defined as any uncontrolled loss of urine with frequency of at least twice per month, the prevalence rate ranged from 4.5% to 37%, with a mean of 18%.⁸² These findings show that the accurate and reproducible prevalence of UI cannot be measured without using standardized definitions and validated questionnaires in well-designed high-quality studies.⁷⁹

Several studies reported about the prevalence of different UI types, including SUI, UUI, and MUI. The most prevalent type of UI in the individual studies and in our meta-analysis was SUI. The prevalence ranged between 13% and 50% in younger and between 6.4% and 42.2% in older women. The number of participants included in the group with younger women ranged from 405 to 27 936 and the number of

participants included in the group with older women from 227 to 142 651.^{40,55,62,64,68} It seems that the lower and upper limits of prevalence rates are different in first world countries where study participants were mainly evaluated by population-based or cross-sectional surveys. In contrast, data in the developing world was frequently collected by nonvalidated questionnaires for self-completion, postal surveys or face-to-face interviews.^{29,31,33,34,41,43,47,49,50,56,58,62,63,66,69,70} This was the reason why we performed a subgroup analysis to distinguish the UI prevalence rates with validated or nonvalidated questionnaires. Our subanalysis showed that UI prevalence rates with nonvalidated questionnaires are almost identical to those obtained by validated questionnaires. Therefore, we are confident that the use of nonvalidated questionnaires in 45% of the studies did not have a relevant impact on the overall result.

4.1 | Recommendations for future research

There are still limited numbers of studies assessing the UI prevalence in developing countries. More studies are needed to draw a more accurate, valid, and homogenous picture of the problem. Furthermore, there is a need to use one internationally accepted method for assessing the prevalence of UI which includes, next to others, the same sampling strategy, definition of UI, questionnaires, and age groups. Since there is a high prevalence rate of UI in different regions of the world, additional studies can help estimating the true and accurate prevalence rates worldwide.

5 | CONCLUSIONS

Despite differences in the definition of UI, assessment tools, geographical regions, and ethnicities, we were able to calculate the overall prevalence of female UI in the developing world, which is approximately 26%. However, UI prevalence rates vary widely throughout the world and, therefore, prevalence rates of 2.8% or 57.7% can both be meaningful. Surprisingly, the prevalence of UI varied widely in smaller regions. We were unable to perform an age-based analysis of UI because of the lack of data in the included studies. A multinational study in the developing world with inclusion of different age groups and regions/ ethnicities as well as use of identical validated questionnaires and study methodology are necessary for future research and health care policies. Our analysis may stimulate researchers and stakeholders in designing appropriate studies for determination of the exact prevalence of UI.

ACKNOWLEDGMENTS

The researchers would like to thank the regional ethics committee and the vice-chancellor of the Research Center for Evidence Based Medicine and Research for the financial support (Grant No. IR.TBZMED.REC.1397.568). They would also like to thank the International Continence Society for their interest in and approval of the study.

ORCID

Hadi Mostafaei i http://orcid.org/0000-0001-5596-1771

REFERENCES

- Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. *Am J Obstet Gynecol.* 2002;187(1):116-126.
- Ahmadi B, Alimohammadian M, Golestan B, Mahjubi B, Janani L, Mirzaei R. The hidden epidemic of urinary incontinence in women: a population-based study with emphasis on preventive strategies. *Int Urogynecol J.* 2010;21(4):453-459.
- Townsend MK, Curhan GC, Resnick NM, Grodstein F. The incidence of urinary incontinence across Asian, black, and white women in the United States. *Am J Obstet Gynecol.* 2010; 202(4):378.e1-7.
- Haylen BT, de Ridder D, Freeman RM, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. *Int Urogynecol J.* 2010;21(1):5-26.
- Brocklehurst JC. Urinary incontinence in the community analysis of a MORI poll. *BMJ (Clinical Research ed)*. 1993; 306(6881):832-834.
- Amaro JL, Macharelli CA, Yamamoto H, Kawano PR, Padovani CV, Agostinho AD. Prevalence and risk factors for urinary and fecal incontinence in Brazilian women. *Int Braz* J Urol. 2009;35(5):592-597.
- Hajebrahimi S, Azaripour A, Sadeghi-Bazargani H. Clinical and transperineal ultrasound findings in females with stress urinary incontinence versus normal controls. *Pakistan J Biol. Sci.* 2009;12(21):1434-1437.
- 8. Brieger GM, Yip SK, Hin LY, Chung TK. The prevalence of urinary dysfunction in Hong Kong Chinese women. *Obstet Gynecol.* 1996;88(6):1041-1044.
- Bodhare TN, Valsangkar S, Bele SD. An epidemiological study of urinary incontinence and its impact on quality of life among women aged 35 years and above in a rural area. *Indian J Urol.* 2010;26(3):353-358.
- 10. Basak T, Kok G, Guvenc G. Prevalence, risk factors and quality of life in Turkish women with urinary incontinence: a synthesis of the literature. *Int Nurs Rev.* 2013;60(4):448-460.
- 11. Minassian VA, Drutz HP, Al-Badr A. Urinary incontinence as a worldwide problem. *Int J Gynaecol Obstet*. 2003;82(3):327-338
- Choo MS, Ku JH, Oh SJ, et al. Prevalence of urinary incontinence in Korean women:an epidemiologic survey. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(11):1309-1315.
- Milsom I, Altman D, Lapitan M, Nelson R, Sillen U, Thom D. Epidemiology of urinary (UI) and faecal (FI) incontinence and pelvic organ prolapse (POP). *Incontinence*. 2009;4:35-111.

WILEY-Geurourology rodynamics

- Corcos J, Beaulieu S, Donovan J, Naughton M, Gotoh M. Quality of life assessment in men and women with urinary incontinence. *J Urol.* 2002;168(3):896-905.
- 15. Avery JC, Braunack-Mayer AJ, Stocks NP, Taylor AW, Duggan P. Psychological perspectives in urinary incontinence: a metasynthesis. *OA Women's Health*. 2013;1(1):1-10.
- Chong EC, Khan AA, Anger JT. The financial burden of stress urinary incontinence among women in the United States. *Curr Urol Rep.* 2011;12(5):358-362.
- Dubeau CE, Simon SE, Morris JN. The effect of urinary incontinence on quality of life in older nursing home residents. *J Am Geriatr Soc.* 2006;54(9):1325-1333.
- Bakarman MA, Al-Ghamdi SS. The effect of urinary incontinence on quality of life of women at childbearing age in Jeddah, Saudi Arabia. *Glob J Health Sci.* 2015;8(2):281-287.
- 19. John G, Bardini C, Combescure C, Dallenbach P. Urinary incontinence as a predictor of death: a systematic review and meta-analysis. *PLOS One.* 2016;11(7):e0158992.
- Holroyd-Leduc JM, Mehta KM, Covinsky KE. Urinary incontinence and its association with death, nursing home admission, and functional decline. J Am Geriatr Soc. 2004;52(5): 712-718.
- John G, Bardini C, Megevand P, Combescure C, Dallenbach P. Urinary incontinence as a predictor of death after new-onset stroke: a meta-analysis. *Eur J Neurol.* 2016;23(10):1548-1555.
- Tilvis RS, Hakala SM, Valvanne J, Erkinjuntti T. Urinary incontinence as a predictor of death and institutionalization in a general aged population. *Arch Gerontol Geriat.* 1995;21(3): 307-315.
- Garcia-Perez H, Harlow SD, Sampselle CM, Denman C. Measuring urinary incontinence in a population of women in northern Mexico: prevalence and severity. *Int Urogynecol J.* 2013;24(5):847-854.
- WHO. (2018). Definition of regional groupings. Retrieved May 2018, from http://www.who.int/healthinfo/global_burden_ disease/definition_regions/en/
- Godfrey C, Harrison M. Systematic review resource package. The Joanna Briggs Institute method for systematic review research quick reference guide. Kingston, ON: Queen's Joanna Briggs Collaboration; 2010.
- Eshkoor SA, Hamid TA, Shahar S, Mun CY. Factors related to urinary incontinence among the Malaysian elderly. J Nutr Health Aging. 2017;21(2):220-226.
- Hajebrahimi S, Madaen K. The prevalence of GSI-induced urinary incontinence in the population of 15-50 year-old women of Tabriz [Persian]. *Iran Urol J.* 2000;7(23):19-23.
- Çayan S, Yaman Ö, Orhan I, et al. Prevalence of sexual dysfunction and urinary incontinence and associated risk factors in Turkish women. *Eur J Obstet Gynaecol Reprod Biol.* 2016; 203:303-308.
- Chen GD, Lin TL, Hu SW, Chen YC, Lin LY. Prevalence and correlation of urinary incontinence and overactive bladder in Taiwanese women. *Neurourol Urodyn*. 2003;22(2):109-117.
- Choi H, Park JY, Yeo JK, et al. Population-based survey on disease insight, quality of life, and health-seeking behavior associated with female urinary incontinence. *Int Neurourol J.* 2015;19(1):39-46.
- 31. El-Azab AS, Mohamed EM, Sabra HI. The prevalence and risk factors of urinary incontinence and its influence on the quality

of life among Egyptian women. *Neurourol Urodyn*. 2007;26(6): 783-788.

- Horng SS, Huang N, Wu SI, Fang YT, Chou YJ, Chou P. The epidemiology of urinary incontinence and it's influence on quality of life in Taiwanese middle-aged women. *Neurourol Urodyn.* 2013;32(4):371-376.
- Islam RM, Bell RJ, Billah B, Hossain MB, Davis SR. The prevalence of symptomatic pelvic floor disorders in women in Bangladesh. *Climacteric*. 2016;19(6):558-564.
- Javadifar N, Komeilifar R, Afshary Pd, Haghighy zadeh Mh. Urinary incontinence and its predisposing factors in reproductive age women. J IIam Univ Med Sci. 2018;25(6): 45-53.
- Jokhio AH, Rizvi RM, Rizvi J, MacArthur C. Urinary incontinence in women in rural Pakistan: prevalence, severity, associated factors and impact on life. *BJOG: Int J Obstet Gynaecol.* 2013;120(2):180-186.
- Lee KS, Sung HH, Na S, Choo MS. Prevalence of urinary incontinence in Korean women: results of a National Health Interview Survey. World J Urol. 2008;26(2):179-185.
- Manonai J, Poowapirom A, Kittipiboon S, Patrachai S, Udomsubpayakul U, Chittacharoen A. Female urinary incontinence: a cross-sectional study from a Thai rural area. *Int* Urogynecol J Pelvic Floor Dysfunct. 2006;17(4):321-325.
- Marques LP, Schneider IJ, Giehl MW, Antes DL, d'Orsi E. Demographic, health conditions, and lifestyle factors associated with urinary incontinence in elderly from Florianopolis, Santa Catarina, Brazil. *Rev Brasil Epidemiol (Braz J Epidemiol)*. 2015; 18(3):595-606.
- Megabiaw B, Adefris M, Rortveit G, et al. Pelvic floor disorders among women in Dabat district, northwest Ethiopia: a pilot study. *Int Urogynecol J.* 2013;24(7):1135-1143.
- Mikou F, Abbassi O, Benjelloun A, Matar N, el Mansouri A. Prevalence of urinary incontinence in Moroccan women. Report of 1,000 cases. *Ann d'Urolog.* 2001;35(5):280-289.
- de Souza Santos CR, Santos VL. Prevalence of urinary incontinence in a random sample of the urban population of Pouso Alegre, Minas Gerais, Brazil. *Rev Lat Am Enfermagem*. 2010; 18(5):903-910.
- Hsieh CH, Su TH, Chang ST, Lin SH, Lee MC, Lee MY. Prevalence of and attitude toward urinary incontinence in postmenopausal women. *Int J Gynaecol Obstet.* 2008;100(2): 171-174.
- Mohd Sidik S. The prevalence of urinary incontinence among the elderly in a rural community in Selangor. *Malaysian J Med Sci.* 2010;17(2):18-23.
- Ozerdogan N, Beji NK, Yalcin O. Urinary incontinence: its prevalence, risk factors and effects on the quality of life of women living in a region of Turkey. *Gynecol Obstet Invest*. 2004; 58(3):145-150.
- 45. Stones RW, Padmadas SS, Guo S, Brown JJ, Zhao F, Li B. Dyspareunia, urinary sensory symptoms, and incontinence among young Chinese women. *Arch Sex Behav.* 2006;35(5): 561-567.
- 46. Tamanini JT, Lebrao ML, Duarte YA, Santos JL, Laurenti R. Analysis of the prevalence of and factors associated with urinary incontinence among elderly people in the Municipality of Sao Paulo, Brazil: SABE Study (Health, Wellbeing and Aging). *Cad Saude Publica*. 2009;25(8):1756-1762.

- 47. Tozun M, Ayranci U, Unsal A. Prevalence of urinary incontinence among women and its impact on quality of life in a semirural area of Western Turkey. *Gynecol Obstet Invest.* 2009; 67(4):241-249.
- Tseng IJ, Chen YT, Chen MT, Kou HY, Tseng SF. Prevalence of urinary incontinence and intention to seek treatment in the elderly. *J Formosan Med Assoc (Taiwan yi zhi)*. 2000;99(10): 753-758.
- Velazquez Magana M, Bustos Lopez HH, Rojas Poceros G, Oviedo Ortega G, Neri Ruz ES, Sanchez Castrillo C. Prevalence and quality of life in women with urinary incontinence. A population base study. *Ginecol Obstet Mex.* 2007;75(6):347-356.
- Wu XH, Liu XX, Xie KH, Wang RM, Wu YX, Liu YG. Prevalence and related factors of urinary incontinence among Hebei women of China. *Gynecol Obstet Invest.* 2011;71(4): 262-267.
- 51. Zhang L, Zhu L, Xu T, et al. A population-based survey of the prevalence, potential risk factors, and symptom-specific bother of lower urinary tract symptoms in adult Chinese women. *Eur Urol.* 2015;68(1):97-112.
- Zhu L, Lang J, Liu C, Han S, Huang J, Li X. The epidemiological study of women with urinary incontinence and risk factors for stress urinary incontinence in China. *Menopause*. 2009; 16(4):831-836.
- Castro ÁdJM, Caicedo ÁP, Vega JM, Pérez IR. Prevalencia de la sintomatología urogenital en mujeres indígenas colombianas en posmenopausia. *Iatreia*. 2012;25(4):357-368.
- Hemachandra NN, Rajapaksa LC, Manderson L. A "usual occurrence:" stress incontinence among reproductive aged women in Sri Lanka. Soc Sci Med. 2009;69(9):1395-1401.
- 55. Jesus Menezes MA, Hashimoto SY, de Gouveia Santos VL. Prevalence of urinary incontinence in a community sample from the city of Sao Paulo. *J Wound Ostomy Continence Nurs*. 2009;36(4):436-440.
- Juliato CR, Baccaro LF, Pedro AO, Gabiatti JR, Lui-Filho JF, Costa-Paiva L. Factors associated with urinary incontinence in middle-aged women: a population-based household survey. *Int Urogynecol J.* 2017;28(3):423-429.
- 57. Kwon CS, Lee JH. Prevalence, risk factors, quality of life, and health-care seeking behaviors of female urinary incontinence: results from the 4th Korean National Health and Nutrition Examination Survey VI (2007-2009). *Int Neurourol J.* 2014; 18(1):31-36.
- Liu B, Wang L, Huang SS, Wu Q, Wu DL. Prevalence and risk factors of urinary incontinence among Chinese women in Shanghai. *Int J Clin Exp Med.* 2014;7(3):686-696.
- 59. Ma SS. The prevalence of adult female urinary incontinence in Hong Kong Chinese. *Int Urogynecol J Pelvic Floor Dysfunct*. 1997;8(6):327-331.
- Nobrega AM, Patrizzi LJ, de Walsh IA. Associação entre a incontinência urinária, caracteristicas ginecológicas, obstétricas, miccionais e qualidade de vida de mulheres. *Medicina (Ribeirao Preto Online)*. 2015;48(4):349-358.
- Ojengbede OA, Morhason-Bello IO, Adedokun BO, Okonkwo NS, Kolade CO. Prevalence and the associated trigger factors of urinary incontinence among 5000 black women in sub-Saharan Africa: findings from a community survey. *BJU Int.* 2011;107(11):1793-1800.

- 62. Onur R, Deveci SE, Rahman S, Sevindik F, Acik Y. Prevalence and risk factors of female urinary incontinence in eastern Turkey. *Int J Urol.* 2009;16(6):566-569.
- 63. Pang MW, Leung HY, Chan LW, Yip SK. The impact of urinary incontinence on quality of life among women in Hong Kong. *Hong Kong Med J (Xianggang yi xue za zhi)*. 2005;11(3):158-163.
- 64. Pathiraja R, Prathapan S, Goonawardena S. Urinary incontinence of women in a nationwide study in Sri Lanka: prevalence and risk factors. *Urol J.* 2017;14(3):3075-3080.
- 65. Prabhu SA, Shanbhag SS. Prevalence and risk factors of urinary incontinence in women residing in a tribal area in Maharashtra, India. *J Res Health Sci.* 2013;13(2):125-130.
- 66. Wong T, Lau BY, Mak HL, Pang MW, Cheon C, Yip SK. Changing prevalence and knowledge of urinary incontinence among Hong Kong Chinese women. *Int Urogynecol J Pelvic Floor Dysfunct.* 2006;17(6):593-597.
- Zhang W, Song Y, He X, et al. Prevalence and risk factors of lower urinary tract symptoms in Fuzhou Chinese women. *Eur Urol.* 2005;48(2):309-313.
- Jiang Y, Yan L, Du FD, et al. Prevalence and associated factors of female urinary incontinence in Hebei province. *Zhonghua Fu Chan Ke Za Zhi.* 2016;51(12):914-920.
- Li L, Zhu L, Lang JH, Han SM, Liu CY, Xu T. Epidemiological study of women adults with mixed urinary incontinence in China. *Zhonghua Yi Xue Za Zhi*. 2010;90(21):1487-1490.
- Yu PL, Shi J, Liu XR, et al. Study on the prevalence of urinary incontinence and its related factors among elderly in rural areas, Jixian county, Tianjin. *Zhonghua Liu Xing Bing Xue Za Zhi.* 2009;30(8):766-771.
- Mourad S, Shokeir A, Ayoub N, et al. Prevalence and impact of lower urinary tract symptoms: Results of the epic survey in Egypt. *Neurourology and urodynamics*. 2019;38(2):637-643.
- 72. Ge J, Yang P, Zhang Y, Li X, Wang Q, Lu Y. Prevalence and risk factors of urinary incontinence in Chinese women: a population-based study. *Asia Pac J Public Health*. 2015;27(2): Np1118-Np1131.
- Kim Y, Kwak Y. Urinary incontinence in women in relation to occupational status. Women Health. 2017;57(1):1-18.
- Haidich AB. Meta-analysis in medical research. *Hippokratia*. 2010;14(Suppl 1):29-37.
- Alrubaiy L, Hutchings HA, Williams JG. Assessing patient reported outcome measures: a practical guide for gastroenterologists. United European Gastroenterol J. 2014;2(6): 463-470.
- Clarke P, Crawford C, Steele F, Vignoles A. Revisiting fixedand random-effects models: some considerations for policyrelevant education research. *Education Economics*. 2015;23(3): 259-277.
- 77. Diokno AC. Incidence and prevalence of stress urinary incontinence. *Adv Stud Med.* 2003;3(8E):S824-S827.
- 78. Higa R, Lopes MHBdM, Turato ER. Psychocultural meanings of urinary incontinence in women: a review. *Rev Lat Am Enfermagem*. 2008;16:779-786.
- 79. Serati M, Ghezzi F. The epidemiology of urinary incontinence: a case still open. *Ann Transl Med.* 2016;4(6):123.
- Hampel C, Wienhold D, Benken N, Eggersmann C, Thüroff J. Definition of overactive bladder and epidemiology of urinary incontinence. *Urology*. 1997;50(6):4-14.

24 | WILEY-Understand

- Diokno AC, Brock BM, Brown MB, Herzog AR. Prevalence of urinary incontinence and other urological symptoms in the noninstitutionalized elderly. J Urol. 1986;136(5): 1021-1025.
- Thomas TM, Plymat KR, Blannin J, Meade T. Prevalence of urinary incontinence. Br Med J. 1980;281(6250): 1243-1245.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section. How to cite this article: Mostafaei H, Sadeghi-Bazargani H, Hajebrahimi S, et al. Prevalence of female urinary incontinence in the developing world: A systematic review and meta-analysis—A Report from the Developing World Committee of the International Continence Society and Iranian Research Center for Evidence Based Medicine. *Neurourology and Urodynamics*. 2020;1–24. https://doi.org/10.1002/nau.24342