1	AN INTERNATIONAL CONTINENCE SOCIETY (ICS)
2	REPORT ON THE TERMINOLOGY
3	FOR PELVIC FLOOR MUSCLE ASSESSMENT
4	
5	Helena Frawley^, Beth Shelly*^, Melanie Morin^,
6	Stéphanie Bernard^, Kari Bø^; Giuseppe Alessandro Digesu*^, Tamara Dickinson,
7	Sanchia Goonewardene; Doreen McClurg^, Mohammad Sajjad Rahnama'i^, Alexis Schizas,
8	Marijke Slieker-ten Hove, Satoru Takahashi, Jenniffer Voelkl Guevara^
9	Standardization Steering Committees ICS*, ICS Working Group on
10	Terminology for Pelvic Floor Muscle Assessment.^
11	
12	Helena Frawley: The University of Melbourne. Australia. h.frawley@unimelb.edu.au
13	Beth Shelly: Moline. Illinois. U.S.A. beth@bethshelly.com
14	Melanie Morin: University of Sherbrooke. Québec. Canada. Melanie.M.Morin@usherbrooke.ca
15	Stéphanie Bernard: Université Laval. Québec. Canada. stephanie.bernard@cirris.ulaval.ca
16	Kari Bø: Norwegian School of Sports Sciences, Dept of Sports Med, Oslo/Akershus university
17	hospital,Dept of Obstet Gynecol, Lørenskog, Norway. kari.bo@nih.no
18	Tamara Dickinson: UT Southwestern Medical Center, Dallas. U.S.A.
19	Tamara.Dickinson@UTSouthwestern.edu
20	Giuseppe Alessandro Digesu: St Mary's Hospital, Imperial College, London. United Kingdom.
21	a.digesu@imperial.ac.uk
22	Sanchia Goonewardene: Royal Free/ UCL Hospitals. London. United Kingdom.
23	ssg7727@yahoo.co.uk
24	Doreen McClurg: Glasgow Caledonian University. United Kingdom. Doreen.McClurg@gcu.ac.uk

- 25 Mohammad Sajjad Rahnama'i: University Hospital of Aachen, Germany and Maastricht University
- 26 Medical Centre. The Netherlands. Sajjad_r@yahoo.com
- 27 Alexis Schizas United Kingdom. ampschizas@gmail.com
- 28 Marijke Slieker-ten Hove: University of Erasmus. Rotterdam. ProFundum Instituut, The
- 29 Netherlands. mcpslieker@gmail.com
- 30 Satoru Takahashi: Nihon University. Tokyo. Japan. takahashi.satoru@nihon-u.ac.jp
- 31 Jenniffer Voelkl Guevara: University Hospital Fundación Sante Fé de Bogotá. Colombia.
- 32 jvoelkl28@gmail.com
- 33
- 34 Correspondence to:
- 35 Associate Professor Helena Frawley,
- 36 The University of Melbourne, Melbourne. Victoria. Australia.
- 37 Tel: +61 418584813; h.frawley@unimelb.edu.au
- 38
- 39

40 ABSTRACT

Introduction: The terminology for female and male pelvic floor muscle (PFM) assessment has expanded considerably since the first PFM function and dysfunction standardisation of terminology document in 2005. New terms have entered assessment reports, and new investigations to measure PFM function and dysfunction have been developed. An update of this terminology was required to comprehensively document the terms and their definitions, and to describe the assessment method and interpretation of the finding, in order to standardise assessment procedures and aid diagnostic decision-making.

48 Methods: This report combines the input of members of the Standardisation Committee of the 49 International Continence Society (ICS) Working Group 16, with contributions from recognized 50 experts in the field and external referees. A logical, sequential clinically-directed assessment 51 framework was created against which the assessment process was mapped. Within categories 52 and subclassifications, each term was assigned a numeric coding. A transparent process of 11 53 rounds of full working group and external review was undertaken to exhaustively examine each 54 definition, plus additional extensive internal development, with decision-making by collective 55 opinion (consensus).

56 **Results:** A Terminology Report for the symptoms, signs, investigations and diagnoses 57 associated with PFM function and dysfunction, encompassing 185 separate 58 definitions/descriptors, has been developed. It is clinically-based with the most common 59 assessment processes defined. Clarity and user-friendliness have been key aims to make it 60 interpretable by clinicians and researchers of different disciplines.

61 *Conclusion:* A consensus-based Terminology Report for assessment of PFM function and 62 dysfunction has been produced to aid clinical practice and be a stimulus for research.

- 63
- 64

65 WORDS

- 66 (Abstract): 248
- 67 (*Introduction-Section 4*): including tables and figures: 18,265
- 68 (Footnotes): 2,144
- 69 (Appendix): -
- 70
- 71 **TABLES** 27
- 72 **FIGURES** 12
- 73
- 74 **DISCLOSURES**:
- 75 Helena Frawley: Nil to disclose
- 76 *Beth Shelly:* Nil to disclose
- 77 *Melanie Morin:* Nil to disclose
- 78 Stéphanie Bernard: Nil to disclose
- 79 *Kari Bø:* Nil to disclose
- 80 Tamara Dickinson: Nil to disclose
- 81 Giuseppe Alessandro Digesu: Nil to disclose
- 82 Sanchia Goonewardene: Nil to disclose
- 83 Doreen McClurg: Nil to disclose
- 84 *M Sajjad Rahnama'i:* Consultant for Bioness, Dr Pfleger, Astellas and Janssen
- 85 Alexis Schizas: Nil to disclose
- 86 Marijke Slieker-ten Hove: KOL Indiba
- 87 Satoru Takahashi: Nil to disclose
- 88 Jenniffer Voelkl Guevara: Nil to disclose.
- 89
- 90

91 **INTRODUCTION:**

92 The current terminology used in the assessment and diagnosis of pelvic floor muscle (PFM) function 93 and dysfunction is both diverse and variably defined, with no current consensus which captures, 94 defines and describes all terms. This document lists and describes terms which are used in the neuro-95 myo-fascial assessment and diagnosis of the PFM to aid teaching and standardisation of terminology 96 in this field. The terminology covers the assessment of both structure and function of the PFM. The 97 pelvic floor structures defined in this document include muscular tissues in the pelvic floor and their 98 neural connections, and the fascial (connective tissue) layers surrounding the PFM fibres/fascicles. In 99 this document, assessment of the PFM is presented according to the perineal and pelvic regions of 100 PFM. While PFM anatomy nomenclature varies according to texts, the following structures are 101 considered to be the muscles that make up the perineum and the pelvic floor/levator ani⁽¹⁾. The perineal region is divided into the anterior and posterior triangles. The anterior urogenital triangle comprises 102 103 the superficial urogenital muscles (bulbospongiosus/bulbocavernosus, ischiocavernosus and the 104 superficial transverse perinei), and the deep urogenital muscles (external urethral sphincter and deep 105 transverse perinei). The posterior (anal) triangle comprises the external anal sphincter. The levator ani 106 is comprised of pubococcygeus (which includes puborectalis, pubovisceralis, pubovaginalis, etc), 107 iliococcygeus and ischiococcygeus/coccygeus (considered vestigial). The female and male perineal 108 and PFM, inferior and superior views, are illustrated in Figure 1.

109

- Figure 1a Muscles of the female perineum and pelvic floor, inferior and superior views (reprinted with
 permission from Primal pictures⁽²⁾)
- 113

Figure 1b Muscles of the male perineum and pelvic floor, inferior and superior views (reprinted with
 permission from Primal pictures⁽²⁾)

When referencing this document, the reader is asked to keep the term in context with PFM assessment. The PFM terms included apply to adult females and males presenting with different types of pelvic floor disorders. Assessment techniques are undertaken externally (*per perineum* (PP), and internally (*per vaginam* (*PV*) or *per rectum* (*PR*)). Where the definition or description of the term requires modification to differentiate between female (*f*) and male (*m*) assessment, this is indicated.

123

The search strategy used for this document was performed according to International Continence Society (ICS) Standardisation Steering Committee guidelines. The working group of multi-national and multi-disciplinary committee members applied expert opinion to identify existing terms that refer to PFM assessment. Existing published ICS Standardization of Terminology documents were searched and terms added to cover all published terms or in common clinical use that refer to the assessment of PFM function and dysfunction. Inclusion of the final list of terms was achieved via a consensus process, which took place between 2017 – 2019. The final list of terms serves as a reference for future 131 refinement and testing for clinical utility. This document is not a clinical protocol or guideline for how 132 to perform a PFM assessment, it defines and describes terms which may be used in a clinical 133 assessment of PFM function. As such, this document does not include within its scope other important 134 considerations when undertaking a PFM assessment. These include but are not limited to competency 135 of the assessor, clinical reasoning required for diagnostic decision-making, protocol when conducting 136 a sensitive examination of an intimate body part, appropriate informed consent, and ethical and legal considerations⁽³⁾. Further, only a brief, introductory level description of how to undertake the test is 137 138 provided, not a detailed description of the exercise protocol using that tool, with the reader directed to 139 other texts for more detailed description.

140

141 If a term relevant to PFM assessment does not currently exist in an ICS Standardisation of Terminology 142 document, it is indicated as a "NEW" term. When a term appears in an existing ICS Standardisation 143 of Terminology document, the term definition and description is reproduced here with reference to the 144 original terminology document, in order to present a complete framework of PFM assessment. When 145 a modification to the existing term occurs, the word "CHANGED" is used. If the change is a 146 significant alteration from the existing term, a footnote is used to explain the reason for modification, 147 and a reference to the original term cited. Several of the terms related to ultrasound imaging have been 148 drawn from the AIUM/IUGA practice parameter for the performance of Urogynecological ultrasound examinations document⁽⁴⁾. Similarly, terms in the algometry section already exist in the field of pain 149 150 science, and terms related to muscle function exist in the field of exercise physiology, etc. These terms 151 are labelled **NEW** for the purposes of this document however we acknowledge that these terms are 152 already published and may be in widespread use.

153

154 Table 1: Total, new and changed ICS definitions

Section	New Definitions /	Changed	Unchanged	Total	
	Descriptors	Definitions /	Definitions /		
		Descriptors	Descriptors		
Introduction &	1	1	0	2	
Symptoms					
Signs	31	15	12	58	
Investigations	80	18	17	115	
Diagnoses	7	3	0	10	
Total	119 (64%)	37 (20%)	29 (16%)	185	

156 There is a plethora of existing terms and conceptual and operational definitions related to PFM function and dysfunction ⁽⁵⁾. Saltiel et al⁽⁵⁾ observed inconsistency and redundancy in PFM function terminology 157 158 and suggested that a further consideration of PFM function terms relevant to research and to clinical practice is required⁽⁵⁾. A mapping of PFM function terms to the WHO International Classification of 159 160 Functioning, Disability and Health (ICF) framework has been recently proposed⁽⁶⁾, leading to a list of the most frequently used terms⁽⁷⁾. In this paper, we define the assessment term, describe the application 161 162 of the test and interpretation of its finding within a framework of diagnostic decision-making and 163 clinical reasoning. This follows the usual order of assessment undertaken by a clinician or researcher 164 (referred to in this paper as an 'assessor'), leading to a presumed diagnosis and formulation of a 165 treatment plan, to help guide clinical practice. This process includes the use of a patient's history, 166 patient-reported symptoms/outcomes, and information gained from clinical signs and the results of 167 investigations. It is important to recognize that neuro-musculo-skeletal structures beyond the PFM 168 muscles (e.g. intra- and extra pelvic muscles, the bony pelvis and pelvic girdle joints and central 169 nervous system factors) may impact on PFM function, however terminology relating to the assessment 170 of these structures and systems is beyond the scope of this paper.

We hope the terminology sited within this framework provides greater clarity and aids standardisation of the usage of these terms. Where possible, the sequence of the terminology follows this order: the region of assessment, the type of evaluation being undertaken, the name ('term') of the test / assessment being undertaken, the definition of that term, the description of how that assessment method is undertaken, how the assessment is rated and the terminology used to describe the finding.

177

178 Limitations

179 Normative data of PFM structure and function are lacking for the majority of PFM terms, which 180 hinders the ability to rate or interpret the finding as 'normal' or 'abnormal'. In addition, due to the lack 181 of known validity, reliability and responsiveness to change and diagnostic test accuracy (sensitivity, 182 specificity) of many of the commonly used PFM clinical assessment methods, investigations and 183 diagnoses, the clinical utility of these terms remains unknown. Therefore, this document is not intended 184 to be an evidence-based recommendation of which tests should be included in a PFM assessment; 185 rather our aim is to define and describe currently used terms, which subsequent research may 186 recommend for or against using in PFM assessment. Evidence to support or abandon the use of any of 187 these terms and assessment methods is eagerly awaited. In the meantime, we advise assessors to 188 exercise great caution in their interpretation of clinical findings, especially those measured with visual 189 observation, digital palpation and outputs of some of the available assessment tools, as despite their 190 widespread clinical usage, these tests can yield subjective and highly variable findings. Due to the 191 abundance and variety of terms used in the literature related to methods and techniques of 192 measurements, word count has necessitated that this document describes only the most frequently 193 published, or methods and techniques using that particular tool in common clinical usage.

195 With these limitations in mind, we recommend rating of PFM symptoms as present or absent; if 196 present, a severity and/or bother scale can be added to aid re-assessment in response to an intervention. 197 Some of the signs and investigations terms have rating scales associated with their method and these 198 should be used; if not, we recommend that assessors employ linear measurements (mm/cm) or specify 199 ISI international units of measurement (e.g. s=seconds) where applicable to aid objectivity of the 200 assessment method. If 'normal' observations or values are not known, we recommend avoidance of 201 the term 'abnormal' or suggestion of pathology or disorder, as this cannot be confirmed with current 202 knowledge. When using assessment methods which measure on a continuous scale but lack reference 203 data of a 'normal' value. the terms 'increased'/'elevated'/'higher'/'faster', or 204 'decreased'/'reduced'/'lower'/'slower' may be used as this is the limit of our certainty at this point in 205 time. Nevertheless, we acknowledge the subjectivity of these relative rating terms.

206

207 SECTION 1: SYMPTOMS

This section lists symptoms a patient may use to describe a sensation which could be related to a disorder of PFM structure or function. We recommend the assessor accurately documents the term the patient uses to describe the symptom, rather than an assessor-interpreted term, as symptoms may be used as a patient-reported outcome. A patient-reported outcome is any report of the status of a patient's health condition that comes directly from the patient, without interpretation of the patient's response by an assessor ^(8,9).

214

Pelvic floor muscle-related symptoms are divided into sensory and motor categories. Pelvic floor muscle-related symptoms may co-exist with symptoms of pelvic floor disorders such as urinary incontinence, voiding dysfunction, faecal incontinence, defecatory dysfunction, sexual dysfunction or pelvic organ prolapse, as well as co-exist with other disorders of neuro-musculo-skeletal structures in the pelvis or spine $_{FN1.1}$: the assessor should document the patient's symptoms and identify which of

220 these s/he considers to be related to the PFM. Examples are provided of words a patient may use to 221 describe their symptoms to the assessor. These words are not specific to neural or myofascial structures 222 in the PFM – they are generic and may be used by a patient to describe altered sensation in any body 223 part – and are therefore not different to standard definitions of these terms in English dictionaries. For 224 this reason, definitions are not provided for these terms in this document, as they are not PFM-specific. 225 The likely exception is the term 'wind', which is defined below. In addition to documenting the 226 patient's symptom (term) and any other descriptors the patient uses to describe the symptom, the 227 assessor documents the perceived location, frequency of occurrence, severity, distress, bother or 228 impact of these symptoms to the patient.

229

1.1 PFM sensory symptoms: patient terms may include numbness, reduced feeling, decreased
sensation, tingling, pins and needles, sensitivity/hypersensitivity, or increased or unusual sensation
in the region the patient perceives to be related to the PFM. Terms used to describe painful
symptoms may include pain, tender, ache, burning or discomfort in the region the patient perceives
to be related to the PFM; use of existing descriptors in published scales⁽¹⁰⁾ is recommended.

1.2 PFM motor symptoms: patient terms may include loose, lax, gaping, sagging, open, weak,
bulging, heaviness, full, loss of control, or difficulty to relax, tight, tense, narrow or constricted. A
patient may describe 'wind' as a noise or passage of gas.

1.2.1 Vaginal wind: an involuntary passage of odourless air through the vagina, which is often
 audible and/or sensible, and usually associated with a change in posture (CHANGED)^(11,12). FN1.2
 This may occur when legs are abducted and a change of position occurs and during times of low
 estrogen (e.g. breast-feeding).

242 **1.2.2 Anal wind**: FN1.3 complaint of involuntary loss of flatus (gas). (NEW)

- 244 Following the assessment of a patient's symptom(s), the assessor will formulate provisional
- 245 differential diagnoses which will be refined following the clinical examination.

FN1.1 For complete assessment, include as indicated: posture, abdominal, spinal, functional.

 $_{FN1.2}$ 'Vaginal flatus' is the term used by Sultan⁽¹¹⁾ however Neels⁽¹³⁾ distinguishes vaginal 'wind' from vaginal 'flatus'; assigning the term flatus to wind that is passed through the vagina due to an enterovaginal fistula. This type of 'vaginal wind' will not be odourless. The term 'vaginal flatus' is more likely to be used by the clinician, not the patient.

FN1.3 This symptom is called 'flatus incontinence' by Sultan et al⁽¹¹⁾.

247 SECTION 2: SIGNS

Signs are elicited from the clinical examination, which includes visual observation, physical inspection 248 249 and simple tests FN2.1. The majority of PFM clinical signs are tested using digital palpation. The term 'palpation' (latin origin: *palpare*) means to touch gently or to use the fingers or hands to examine⁽¹⁴⁾. 250 251 Palpation allows the assessor to feel the texture, size, consistency and location of certain body parts 252 with the hands, or in the case of PFM assessment, with the fingers or finger-tips FN2.2. Due to the 253 inherent subjective nature of visual and digital assessment, many of these characteristics and properties 254 of the PFM are more accurately assessed using investigations. While some terms will be defined in 255 signs, the measurement of that term may be better done in investigations. If an assessor does not have 256 access to investigations, findings from signs may be used to guide practice, however subsequent 257 research may cast doubt on the certainty of findings from signs.

258

There are several aspects for the assessor to be aware of during the clinical assessment which apply to all measured aspects of PFM function, as variations in the examination conditions or maneuvers may alter the results of the test and reduce the certainty of the finding. These are listed in Box 1. We recommend all of these aspects should be reported by assessors to enable reproducibility of assessment. Akin to published checklists for exercise prescription⁽¹⁵⁾, checklists of clinical assessment may improve completeness and quality of research reports.

265

266 Box 1: Checklist of PFM clinical assessment, applicable to signs and investigations

Aspect to standardize		De	etails to record
1.	Patient's body position for the PFM	•	lying or upright
	assessment.	•	if lying, hip/knee flexion, supine, side-lying or
			lithotomy

		• number of pillows, +/- support from assessor's body
		• bladder empty or not.
2.	Testing of left and right sides of	Record if symmetry / asymmetry is present at rest and on
	PFM.	activity (contraction / relaxation). Rate as:
	Symmetry: A measure of	• symmetry between left and right (on a particular
	comparability of resting tone or	aspect/parameter)
	shape between left and right sides of	• asymmetry present. Identify what aspect/parameter
	the muscle. If examining in side-	is asymmetrical, e.g. tone, $L < R^{(16)}$.
	lying, there will be a gravity effect	
	and the dependent side may have a	
	different feel to the upper side and	
	appear as asymmetrical. This may	
	affect assessor perception of PFM	
	resting tone.	
3.	Amount of pressure (light / moderate	• if discomfort or pain is provoked, note pain location,
	/ strong) applied during digital	intensity, duration (transient or persistent), if it
	palpation tests. Particular care is	reproduces the pain the patient complains of, and if
	required when undertaking a PFM	referral of pain occurs to other locations.
	assessment in the presence of pelvic	
	floor pain, however even in an	
	asymptomatic individual, the	
	assessor may provoke pain or	
	discomfort due to undue pressure	
	applied during palpation or	
	application of an instrument.	

4.	Number of digits (and which digit)	•	for single digit examination (PV or PR), usually the
	used during digital palpation.		index finger is used
		•	for 2-digit examination (PV), usually the index and
			middle digits are used.
5.	Orientation (e.g. lateral placement or	•	the examining finger must be as close as possible to
	posterior midline) and depth of		the PFM tissue in order to assess PFM response.
	examining finger(s) during internal	•	when performing a PV examination, assessor
	digital palpation examination FN2.3.		decision as to which side or midline to examine will
			be determined by lumen capacity, presence of
			tenderness or defect and presence of firm stool within
			the rectum
		•	when performing a PR examination, external anal
			sphincter and puborectalis strength should be
			assessed separately
		•	record depth of insertion of examining finger for
			differential assessment of perineal vs levator ani
			muscle layers. Further identification of individual
			muscles is not possible in all individuals.
6.	Instruction to perform a maximum	•	provide details of the instruction (wording, number
	voluntary contraction (MVC).		of repetitions and rest between repetitions) to ensure
			the test can be reproduced as an MVC.
7.	Contraction of muscles other than	•	if this is perceived to influence the PFM assessment,
	those of the pelvic floor.		an attempt to minimize this should be made unless
			the purpose is to assess function of the other muscle.

	•	List	specific	muscle,	such	as	abdominal,	hip
		addu	ctor, etc.					

Abbreviations: PFM, pelvic floor muscle(s); L, left; R, right; *PV, per vaginam*; *PR, per rectum*; MVC,
maximum voluntary contraction.

269

This section divides the clinical examination into an external PP assessment and an internal *PV* or *PR* assessment. The order of examination for PP assessment is visual observation before digital palpation. The full description of each term appears in the subsequent tables and text. Not all tests may be applicable for each patient; the decision to perform a test should be based upon clinical judgement.

- 274
- 275

276 **2.1 External assessment per perineum**

Visual observation: all terms related to the visual observation per perineum under different PFM
states (at rest, on contraction and with raised intra-abdominal pressure [IAP]) are listed and defined
in Table 2.

280

281 Table 2. External assessment *per perineum*: visual observation.

Tests of visual observation <i>per perineum</i> at rest	
Test	Rating
2.1.1 Perineal skin assessment: assessment of the	• normal skin
perineal skin to note presence of: scars, lesions (e.g.	• altered (detail the observation including
fissure), trophic changes / atrophy, color, erythema,	extent of alteration)
swelling and other conditions which could affect the	
function of the PFM. (NEW)	

2.1.2 Perineal body length (<i>f</i>): distance from	• state if $< \text{or} > 3 \text{cm}^{(19,20)}$
posterior margin of vestibule to anterior anal verge ⁽¹⁸⁾ .	
2.1.3 Perineal body position at rest: relationship of	• 2.1.3.1 Descended perineum: perineal
the position of the perineal body to ischial tuberosities	body rests below the plane of the ischial
FN2.4. (NEW). Palpate ischial tuberosity and visually	tuberosities ⁽²³⁾ (NEW)
estimate the relationship.	• normal: at or slightly above the level of
	the ischial tuberosities
	• elevated: significantly indrawn
	perineum at rest
2.1.4 Introital gaping: opening, or non-coaptation of	• present
vagina at rest. (NEW) If the introitus is not visible at	• absent
rest the labia may need to be parted	
2.1.5 Keyhole deformity at anus: characteristic	• present
posterior midline furrow deformity. This complication	• note location of deformity with
is seen when the anus is inspected by gently retracting	reference to a clock-face (where 12
the buttocks laterally. The anus is no longer slit-like,	o'clock is anterior/ventral)
but appears in shape like a keyhole ⁽²⁵⁾ . (NEW)	• absent
2.1.6 Anal gaping: non-coaptation of anal mucosa at	• present
rest ⁽¹¹⁾ .	• note location of deformity with
	reference to a clock-face
	• absent
Tests of visual observation <i>per perineum</i> with a PFM	A contraction
2.1.7 Voluntary contraction of the PFM: self-	• present
initiated activation of the PFM. (CHANGED) ⁽²⁶⁾	• uncertain

Contraction of the bulbospongiosus /	• absent
bulbocavernosus, ischiocavernosus, transverse	• Response can be further described
perineii muscles may be observed $_{\text{FN2.5}}$. The assessor	according to perineal movement
may need to gently move the external genitalia	observed:
(parting of the labia, lifting of the scrotum to one side)	• 2.1.7.1 Perineal elevation: inward
to effectively visualize the perineal response.	(ventrocephalad) movement of the
	vulva (f), perineum, and anus ^(11,27) =
	normal finding
	• no change
	• sex-specific changes on perineal
	elevation:
	\circ <i>f</i> : closure of the urethral meatus
	('wink'); a clitoral 'nod'
	\circ <i>m</i> : closure of the anus, cephalad
	testicular lift and penile
	retraction (the shaft of the penis
	draws in FN2.6) ⁽²⁸⁻³⁰⁾ .
	• 2.1.7.2 Perineal descent: dorsocaudal
	movement of the perineum, or anus 1
	cm or greater beyond resting level
	(CHANGED) ⁽²⁷⁾ FN2.7
2.1.8 Relaxation of the PFM: return of the perineum	If present, rate as:
to its original resting position following the voluntary	• yes: full relaxation visible directly after
contraction (NEW)	instruction; normal finding ⁽¹⁶⁾

	• partial or delayed relaxation ⁽¹⁶⁾
	• 2.1.8.1 Non-relaxing PFM: no
	relaxation visualized of the PFM
	(CHANGED) ⁽²⁶⁾ FN2.8.
Tests of visual observation <i>per perineum</i> with an inc	crease in intra-abdominal pressure (IAP)
2.1.9 Perineal movement with a sustained increase	• perineal elevation (see 2.1.7.1) _{FN2.10}
in IAP: direction of perineal movement during a	• no change
sustained effort $_{\text{FN2.9.}}$ (NEW). As there may be a	• perineal descent (see 2.1.7.2)
difference in PFM response to bearing down versus	• 2.1.9.3 Excessive perineal descent
valsalva ⁽³¹⁾ , it is important to state exact test	with bearing down: movement of the
instruction depending on the test, as the observed	perineum 3 cm or more below resting
response may vary.	position ⁽²¹⁾ _{FN2.11} . (NEW)
• 2.1.9.1 Valsalva: Forceful exhalation against a	
closed mouth, glottis and nose ⁽³¹⁾ . (NEW) Valsalva	
has been shown to result in an increase in IAP and	
usually an increase in PFM activation ⁽³¹⁾ .	
• 2.1.9.2 Bearing down (as if defecating): a strain	
or push, which results in an increase in IAP which	
exerts a downward pressure, usually accompanied	
by PFM relaxation. (NEW)	
2.1.10 Perineal movement with rapid increase in	• perineal elevation (see $2.1.7.1$) ⁽²⁶⁾ _{FN2.12} ,
IAP: direction of perineal movement during a rapid	FN2.13
increase in IAP such as coughing, lifting, throwing.	• May be due to:
(NEW) Clarify if the patient is instructed to contract	
PFM before cough in order to differentiate voluntary	

(learned) response from an involuntary response (un-	• voluntary contraction (see 2.1.19) -
learned).	pre-contraction may be a learned
	response FN2.14
	• 2.1.10.1 Involuntary contraction: a
	contraction which occurs reflexively or
	automatically, without volition or
	conscious control. Observe this
	response before instructing in a
	voluntary pre-contraction in order to
	differentiate from the voluntary pre-
	contraction response. (CHANGED) ⁽²⁶⁾
	• no change
	• perineal descent _{FN2.15}

Abbreviations: *f*, female; *m*, male; PFM, pelvic floor muscles; IAP, intra-abdominal pressure

282

283 **Digital palpation**: all terms related to digital palpation *per perineum* under different PFM states (at

rest, on contraction and with raised IAP) are listed and defined in Table 3.

285

286 Table 3. External assessment *per perineum*: digital palpation

Tests of digital palpation <i>per perineum</i> at rest						
Test	Rating					
2.1.11 Sensation: Test for presence, absence or	• allodynic, anaesthetic, dysesthetic,					
altered quality of sensation in dermatomal	hyperalgesic, hyperesthesic,					

distributions especially S2-4. May include light touch,	hypoalgesic, hypoesthesic, paresthesic,
blunt, sharp, pain, cold, vibration modalities. (NEW)	neuralgic ⁽³⁴⁾ .
2.1.12 Perineal scarring: presence of scar tissue on	• present
perineum. (NEW). Using a finger-tip, attempt to slide	• degree of healing
the scar in all directions. Assess for adhesion or lack	• location of scar in relation to
of skin mobility over underlying tissue FN2.16.	vulva/scrotum or anus
	• location of adhesion
	• extent/magnitude of scar mobility ⁽³⁵⁾ .
	• absent
2.1.13 Tone: state of the muscle, usually defined by	• normal
its resting tension, clinically determined by resistance	• decreased tone (see 2.2.3.4)
to passive movement ⁽²⁷⁾ . The recommended position	• increased tone (see 2.2.3.5)
of the examining digit(s) is to place the palmar surface	
of the examining finger on the ischiocavernosus,	
bulbospongiosus (f) / bulbocavernosus (m) or	
transverse perineal muscle belly at the thickest portion	
of the muscle belly, per perineum. Pressure or stretch	
is applied perpendicular to the muscle fibres to assess	
tone. Tone is described in more detail in 2.2.3.	
2.1.14 Tenderness: sensation of discomfort with or	• note location of pressure application
without pain; discomfort elicited through palpation of	• note location of pain (where pressure
any tissue indicates unusual sensitivity to pressure or	applied, or if pain referral present, note
touch ⁽²⁷⁾ . May be generalised within a muscle.	location of pain referral)

2.1.14.1 Tender point: area of localised tenderness	• rate severity of pain on a numeric rating
occurring in muscle, muscle-tendon junction, bursa, or	scale (NRS) 0 – 10 ⁽³⁷⁾
fat pad (CHANGED) ⁽²⁷⁾ _{FN2.17} .	
2.1.15 Pudendal nerve neurodynamics:	• positive: if pain, sensation of burning or
neurodynamic assessment evaluates the length and	stabbing are experienced in the
mobility of the nerve in order to assess neurogenic	distribution of the nerve. This
origin of pain ⁽³⁸⁾ (NEW). Tension is applied to the	assessment can be uncomfortable in
nerve or specific component of the nerve by	asymptomatic individuals, however
lengthening the nerve or by distracting imposing	reproduction of patient's pain is
tissues ⁽³⁸⁾ . Specific components of the pudendal nerve	suggestive of a neurogenic origin of
can be put under tension such as the inferior rectal	pain
branch, the dorsal branch and the perineal branch.	• negative
2.1.16 Cotton swab test (f) FN2.18: a test for vestibular	• positive if gentle pressure reproduces
tissue sensitivity. (NEW) The test is performed with a	patient's pain
cotton swab moistened with water or lubricating gel.	• report location of pain and severity on
Gentle pressure is applied to the following areas of the	NRS $0 - 10^{(37)}$
vaginal vestibule FN2.19 in random order: 12:00, and	• negative
quadrants 12-3:00, 3:00-6:00, 6:00-9:00, 9:00-12:00	
FN2.20•	
Tests of digital palpation per perineum for sacral re	flex function
2.1.17 Sacral reflex testing: a measure of the	• present: observation of anal sphincter
involuntary function of sacral nerves.	contraction. Indicative of intact spinal
(CHANGED) ⁽¹²⁾ _{FN2.21} Tests are described below.	reflex arcs (S2-S4 spinal segments)
	with afferent and efferent nerves
	through the pudendal nerve ⁽⁴¹⁾

	• absent: no sphincter activity
2.1.17.1 Bulbocavernosus reflex (f): A reflex	• present
contraction of the anal sphincter and bulbocavernosus	• absent
in response to squeezing the clitoris (CHANGED) ⁽¹²⁾ .	
2.1.17.2 Bulbospongiosus reflex (m): a reflex	• present
contraction of the striated muscles of the pelvic floor	• absent
(anal sphincter) including bulbospongiosus muscles	
that occurs in response to various stimuli in the	
perineum or genitalia. Most commonly tested by	
placing a finger in the rectum and then squeezing the	
glans penis ⁽⁴²⁾ .	
2.1.17.3 Anal reflex: a reflex contraction of the anal	• present
sphincter in response to a painful pin prick delivered	• absent
to the perianal skin ^{(12)} . (CHANGED) _{FN2.22}	
Tests of digital palpation <i>per perineum</i> with PFM co	ntraction FN2.23
2.1.18 Voluntary contraction of the PFM: self-	• present
initiated activation of the PFM (same term as 2.1.7).	• absent
Each of the bulbospongiosus / bulbocavernosus,	• uncertain
ischiocavernosus and transverse perineii muscles may	
be palpated separately. The assessor may need to	
gently move the external genitalia (parting of the labia,	
lifting of the scrotum to one side) to effectively palpate	
the perineal response.	

Abbreviations: PFM, pelvic floor muscles; *f*, female; *m*, male; NRS, numeric rating scale.

288 2.2 Internal assessment *per vaginam* (*PV*) or *per rectum* (*PR*) by digital palpation

Resting state: The following terms (in Tables 4 and 5) are used to define, describe and rate PFM assessment in the resting state *per vaginam* (*PV*) or *per rectum* (*PR*) by digital palpation. Terms related to muscle tone are expanded upon in subsequent text in order to provide greater explanation of the term definitions and descriptions.

293

294 Table 4. Tests of digital palpation *per vaginam / per rectum*, resting state

Test	Rating		
2.2.1 Sensation: test for presence, absence or altered	• present		
quality of light touch sensation as for 2.1.12.	• absent		
	• altered: increased or decreased		
2.2.2 Presence of scarring: presence of scar tissue	• present		
along vaginal walls or apex. (NEW). Using a finger-tip,	location of adhesion		
attempt to slide the scar in all directions. Assess for	• degree of healing		
adhesion or lack of mucosal / vaginal wall mobility over	• extent/magnitude amount of scar		
underlying tissue. FN2.24	mobility		
	• absent		
2.2.3 Tone: see 2.1.13.	• normal		
The recommended position of the examining digit(s) is	• decreased tone (see 2.2.3.4)		
to place the palmar surface of the examining finger on	• increased tone (see 2.2.3.5)		
the leavtor ani, PV or PR. Pressure or stretch is applied			
perpendicular to the muscle fibres to assess tone.			

Further details regarding terminology and assessment of	
muscle tone are provided in text section 2.2.3 below.	
2.2.4 Fasciculation: individual brief twitches in a	• present
muscle. They may occur at rest or after muscle	• absent
contraction and may last several minutes ^(27,43) .	
2.2.5 Tenderness: see 2.1.15 and 2.1.15.1	See 2.1.15 and 2.1.15.1
2.2.6 Pudendal nerve provocation test: palpation of	• positive (pain response)
the pudendal nerve to reproduce patient's pain if	• negative
entrapment is suspected. The nerve may be palpated at	
the ischial spine, sacrospinous and sacrotuberous	
ligaments, or pudendal canal. ^(44,45) . (NEW)	
Per rectum only:	
2.2.7 Digital rectal examination (DRE) FN2.25: palpatory	examination of the anorectal tissues FN2.26.
(CHANGED) ⁽⁴²⁾	
2.2.8 Palpable anal sphincter gap (PR) : a clear "gap"	• present
in the anal sphincter on digital examination indicates an	• absent
anal sphincter tear. (CHANGED) ⁽¹¹⁾ FN2.27	• note location

295 Abbreviations: NRS, numeric rating scale; PR, per rectum

296

297 2.2.3 Muscle tone

Tone exists on a continuum, from hypotonicity (low tone) to hypertonicity (high tone). Normal tone may overlap with abnormally decreased muscle tone or abnormally increased muscle tone at either end of the tone spectrum, as illustrated in Figure 2. Tone is a dynamic physiological state modulated by many inputs: spinal cord, cortex, brainstem relays, stretch reflexes and cutaneous receptors, visceromotor reflex pathways, emotions and pain (anticipation or
 experience of pain).

304

- Figure 2: Spectrum of muscle tone (adapted from Allen & Widener 2009)⁽⁴⁷⁾
- 306
- We recommend terms to indicate alterations to normal tone are differentiated according to the presence or absence of a neurological disorder, as illustrated in Figure 3. Abnormal tone related to a neurological disorder (hypotonicity, hypertonicity, dystonia) should not be used when describing PFM tone in a patient who does not have a diagnosed neurological disorder.

Figure 3a Terms for disorders of tone due to a neurological disorder

Figure 3b Terms for disorders of tone due to a non-neurological disorder

- Figure 3 Terms for disorders of tone due to a neurological disorder (3a) and a non-neurological
- disorder (3b).
- 314

311

315 Physiological basis of muscle tone

316 Muscle tone has two components: the physiological contractile component, created by the 317 activation of motor units, and the non-contractile viscoelastic, or biomechanical component. The 318 active component (EMG activity) of tone is the component that is related to the neural drive, 319 therefore it is subject to variation and ongoing adjustment. The viscoelastic component is 320 independent of neural activity and reflects the passive physical properties of the viscoelastic 321 tension of the muscle tissues (e.g. the extensibility of actin-myosin cross-bridges); non-322 contractile cytoskeleton proteins and connective tissues surrounding the entire muscle 323 (epimysium), muscle fascicle (perimysium), and muscle fiber (endomysium) as well as the 324 osmotic pressure of the cells. Alterations in either the active or passive component can affect the resting tone; digital palpation cannot differentiate between these elements however 325 326 investigations that combine EMG with another measure that assesses passive properties can 327 identify specific components.

328

A localised area of increased tone within a muscle may be referred to as a taut band⁽⁴⁸⁾. A trigger 329 point is considered to be a tender nodule within a taut band⁽⁴⁸⁾. The trigger point is considered 330 by some authors to be part of the active component of tone⁽⁴⁸⁾ given the local disturbance in 331 332 electrical activity, and by others as a separate category distinct from the active or passive components of tone⁽⁴⁹⁾. Given the uncertainty about the characterisation of a trigger point^(50,51), 333 334 we propose describing palpatory findings by use of the terms 'tender point' (2.1.15.1) and 335 'increased tone' (2.2.3.4) if both observations coincide at the tested site, or use only 'tender 336 point' (2.1.15.1) or 'increased tone' (2.2.3.4) if only one of those signs is observed at the tested 337 site.

338

339 Assessment and rating

- Tone can be assessed by application of digital site-specific compression and/or overall muscle stretch. Digital palpation is inherently subjective and may be limited by pain provocation.
- 342 Several scales to quantify resting PFM tone in the absence of a neurological disorder have been 343 proposed using either a 3-point^(52,53), 6-point⁽⁵⁴⁾ or 7-point⁽⁵⁵⁾ scale.
- 344

345 Definitions and descriptions

- 346
 2.2.3.1 Hypotonicity: a decrease in muscle tone in a patient with a neurological disorder. It
 may be due to a lower motor neuron or a muscle disorder. The term flaccidity⁽⁵⁶⁾ is often used
 interchangeably. (NEW)
- 349 2.2.3.2 Hypertonicity: an increase in muscle tone in a patient with a neurological disorder.
 350 It may be due to an upper motor neuron or extrapyramidal lesion, which in turn may lead to
 351 spasticity⁽⁵⁶⁾ or rigidity⁽⁵⁶⁾ (NEW)
- 2.2.3.3 Dystonia: a disorder characterized by abnormalities of muscle tone and
 movements/postures in a patient with a neurological disorder⁽⁵⁷⁾. It is often due to damage to
 the basal ganglia or other brain regions that control movement. (NEW)
- 2.2.3.4 Decreased PFM tone: a decrease in resting muscle tone in a patient without a
 neurological condition (CHANGED)⁽⁴³⁾
- 357 2.2.3.5 Increased PFM tone: an increase in muscle resting tone in a patient without a
 a neurological disorder. (CHANGED)⁽⁴³⁾. Increased tone may occur without patient report of
 pain.
- 2.2.3.5.1 Transient increased muscle tone: Increased muscle tone that decreases with
 verbal instruction, re-assurance or gentle pressure (NEW). Transient increase in tone may
 occur at any time during the examination.
- 363

364
 2.2.3.5.2 Muscle spasm: persistent contraction of muscle that cannot be reduced
 365
 voluntarily^(11,27,43). Spasms may occur at irregular intervals with variable frequency and
 add extent, and over time may lead to increased viscoelastic stiffness and shortening in the
 muscular and connective tissues FN2.28, FN2.29.

368

369 Resting state *per vaginam* (*PV*) only (*f*): terms related to digital palpation of the vaginal tissues
370 with the PFMs in a resting state are listed in Table 5.

371

Table 5 Tests of digital palpation *per vaginam* only with the PFM in a resting state.

Test	Rating
2.2.9 Flexibility of the vaginal opening: the capacity of	• estimate the number of finger
the vaginal opening to expand in response to stretching.	widths between the muscle bellies
(NEW) Assessed by separating index and middle finger in	• can be converted to cm width for
the medio-lateral direction ⁽⁵⁸⁾ . Digital assessment of the	the recording from that assessor.
vaginal opening is likely to represent the width of the	
levator hiatus _{FN2.30} .	
2.2.10 Levator injury/avulsion: a discontinuity of the	• absent: palpable PFM contraction
levator muscle at its attachment to the inferior pubic ramus.	next to the urethra on the inferior
(NEW) Discontinuity may represent a partial tear, full tear	pubic ramus
or thinning.	• present: a distance of > 3.5 finger
Test for levator injury / avulsion: palpation of levator	widths between the two sides of
tissue, by placing finger(s) between the side of the urethra	puborectalis muscle insertion on
and the edge of the muscle measured on each side. The test	PFM contraction ⁽²⁷⁾ _{FN2.31} .
is performed at rest and confirmed by asking the patient to	• rate number of finger widths
	palpable in the gap.

contract and feeling for the edge of the contractile tissue of	•	several rating scales exist ^(54,59) .
the levator muscle.		

373 Abbreviations: PFM, pelvic floor muscles.

374

375 Pelvic floor muscle contraction: the following terms in Table 6 are used in the definition and
376 the ratings of digital assessment *per vaginam / per rectum* of the PFMs during contraction.

377

378 Table 6 Tests of digital palpation *per vaginam / per rectum* on PFM contraction.

Test	Rating
2.2.11 Voluntary contraction of the PFM: self-initiated	Presence of contraction may be rated
activation of the PFM (same term as 2.1.7). A contraction	as:
is felt as a tightening, lifting, and squeezing action under	• no contraction
the examining finger. Technique:	• correct contraction (cephalad and
• the recommended position of the examining	ventral movement)
digit(s) to assess levator ani contraction (PV)	• contraction only with help from
unilaterally is to place the palmar surface of the	other muscles
examining finger on the lateral levator ani muscle	• uncertain
belly surface or 'edge', which may be identified by	• straining ⁽⁶¹⁾
asking the patient to contract then relax	Absent: 2.2.11.1 Non-contracting
• the recommended position of the examining digit	PFM: during palpation there is no
to assess anal sphincter and puborectalis muscle	palpable voluntary or involuntary
function (PR) is to place the palmar surface of the	contraction of the $PFM^{(26)}_{FN2.32}$.
well-lubricated examining finger at the anal verge	
initially, wait for relaxation of EAS, then insert	

gently along the posterior wall of the anal canal ⁽⁶⁰⁾ .	
Once anal sphincter function is assessed the	
examining digit remains pressed against the	
posterior wall and is inserted slowly into the	
rectum, passing over puborectalis at the anorectal	
junction.	
2.2.12 Digital muscle test (DMT): a test to evaluate PFM	
strength (NEW).	
2.2.12.1 Strength : force-generating capacity of a muscle.	• Commonly used scales include:
Usually expressed as a maximum voluntary contraction	ICS scale: absent, weak, normal
measurement (MVC) ⁽²⁷⁾ . A manual muscle test (MMT)	(we propose the word 'moderate'
evaluates the strength of a muscle by moving the muscle	instead of normal), or strong ⁽²⁶⁾
through its full-range of motion against gravity and then	• modified Oxford grading scale 0-
against gravity with resistance ⁽¹⁴⁾ . However, because joint	5 ⁽⁶⁴⁾
range of motion is not being assessed in the pelvic floor	• Brink scale ⁽⁶⁵⁾ grades 3
and PFM examination is performed with a digit, not a	components (pressure,
hand, the term DMT is preferred. There are more than 25	displacement, and time) on a scale
published DMT scales ^(62,63) which provide grade of	of 1 to 4
strength ranging from absence, to weakness to increasing	• many others ^(62,63)
strength.	
2.2.13 Direction of pelvic floor movement: direction of	• pelvic floor elevation: normal
pelvic floor movement during voluntary PFM contraction	finding
palpated <i>PV</i> (on the posterior vaginal wall) or <i>PR</i> . (NEW)	• pelvic floor descent: palpation of
	downward movement of the PFM
	during attempted PFM contraction

	• no change
2.2.14 Endurance: Muscular endurance refers to the	2.2.14.1 Fatigue: a decreased capacity
ability of a muscle or muscle group to perform repeated	to perform a maximum voluntary
contractions or to maintain a contraction for a	muscle action or a series of repetitive
predetermined period of time ^(66,67) . (CHANGED) ⁽²⁷⁾	contractions. (NEW) Fatigue may
	occur due to central or peripheral
	mechanisms ⁽⁶⁸⁾ . A fatigued muscle is
	unable to continue working even when
	the type of activity is changed FN2.33.
	Record the time at which fatigue starts
	to occur, or the number of contractions
	in a row before onset of fatigue.
2.2.14.2 Sustained contraction endurance test: the	• record number of seconds
number of seconds the patient can hold near maximal or	contraction is sustained at near
maximal PFM contraction. (NEW)	maximal or maximal intensity
2.2.14.3 Repeatability of contraction: the ability to	• record number of contractions in a
repeatedly develop near maximal or maximal force	row
determined by assessing the maximum number of	
repetitions the patient can perform $(CHANGED)^{(27)}_{FN2.34}$.	
2.2.15 Number of rapid contractions performed: the	Use the rating appropriate to the
number of repeated, quick MVCs performed (NEW). This	instruction:
can be measured in two ways, according to the instruction:	1. record the number of contractions
1. number of contractions repeated within a specific	repeated and the duration allowed
duration (i.e. a 10-s period ⁽⁵⁾)	to perform them

2. the elapsed time to perform a pre-specified number of	2.	specify the exact number of
contractions (e.g. $10-s^{(70)}$).		contractions to be repeated and
A contraction should comprise an ascending and a		record the number of seconds to
descending phase with the PFM force returning to the		completion.
resting state in between. If the maximal force declines, the	•	qualitative descriptions can include
assessment ceases.		quality and extent of contraction
		and relaxation phases.
2.2.16 Relaxation post-contraction : return of the PFM to	•	yes: relaxation felt directly after
its original resting tone following the voluntary contraction		instruction: normal finding
$(CHANGED)^{(26)}$ _{FN2.35} . The patient is able to relax the	•	partial or delayed relaxation
PFMs on demand, after a contraction has been performed.	•	no: absent = non-relaxing PFM
Relaxation is felt as a termination of the contraction.		(see 2.1.8.1).
2.2.17 Co-ordination: the ability to use different parts of	•	present
the body together smoothly and efficiently ⁽²⁷⁾ . In the pelvic	•	absent. If absent, describe pattern
floor, co-ordination may be an action between PFMs and		of incoordination. e.g. paradoxical
organ function (e.g. PFM relaxation during voiding),		contraction: the inability to
PFMs and an external environmental event (e.g. movement		maintain PFM relaxation when it is
of a limb) and PFMs and a rise in IAP (e.g. PFM		expected; or lack of PFM
contraction prior to a cough). Co-ordination is an aspect of		contraction when it is expected.
motor control.		
2.2.17.1 Co-contraction: contraction of two or more	•	if present, identify which muscles
muscles at the same time ⁽²⁷⁾ . Co-contraction of muscles		are co-contracting, and whether the
can be synergistic (e.g., resulting in an augmentation of		co-contraction is synergistic or
motor activity) or it could be counterproductive to normal		counter-productive FN2.36.
function (e.g., contraction of antagonistic muscles		

resulting in abnormal movement or training other muscles
instead of the targeted ones, e.g., training of gluteal
muscles instead of the PFM) ⁽²⁷⁾ . Activation or inhibition of
PFM contraction may be task-dependent.

- 379 Abbreviations: PFM, pelvic floor muscles; PV, per vaginam; PR, per rectum; EAS, external anal
- sphincter; DMT, digital muscle test; *f*, female; *m*, male; MVC, maximum voluntary contraction; IAP,
 intra-abdominal pressure.
- 382
- 383 Pelvic floor muscle contraction per vaginam (*PV*) only (*f*): terms related to digital palpation
 384 *per vaginam* only (*f*), on PFM contraction are listed in Table 7.
- 385
- Table 7. Tests of digital palpation *per vaginam* only (*f*), on PFM contraction _{FN2.37}.

Test	Rating
2.2.19 Urethral lift: elevation of the urethra in	• yes: urethral lift palpable
a cephalad direction ⁽¹⁶⁾ . (NEW) Index finger is	• no: no urethral lift palpable
placed along the line of the urethra (on the	
anterior vaginal wall).	
2.2.20 Levator closure: movement of right and	• yes: levator closure movement palpable
left muscle bellies closer together during a PFM	• partial / uncertain: some closure movement
contraction (palpated on the lateral vaginal	palpable, but could be un-certain, or
wall) ⁽¹⁶⁾ . (NEW). May be tested unilaterally if	asymmetrical
bi-digital assessment is uncomfortable for the	• no: no levator closure movement palpable
patient.	
2.2.21 Levator hiatus size: the size of the	• with 2 fingers in the vagina, distance
levator hiatus measured during maximal	measured in centimeters (converted

contraction by a digital examination ⁽⁷¹⁾ _{FN2.38} .	approximately from finger widths) during
(NEW)	PFM contraction
	• LH transverse: the distance between the left
	and right muscle bellies just inferior to the
	pubic bone
	• LH sagittal: the distance between the back of
	the pubic symphysis and the midline raphe of
	the puborectalis ⁽⁷¹⁾ .

- 387 Abbreviations: *PV*, *per vaginam*; LH, levator hiatus.
- 388

389 Pelvic floor muscle response to intra-abdominal pressure *per vaginam* or *per rectum*

390 **2.2.22 Direction of PFM movement during sustained increase in IAP**: as per 2.1.9. Specify

- task instruction, as response may differ depending on wording. Rate as elevation, no change,
- 392 descent (normal finding), excessive descent.
- 393

Following the assessment of a patient's clinical signs, the assessor will formulate a provisional

differential diagnosis which will be refined following the results of the investigations.

 $_{\rm FN2.1}$ Included in the physical examination may be the use of simple tools, such as a pin, cotton wool, reflex hammer etc.

 $_{FN2.2}$ When assessing sensory changes *PV* or *PR*, the clinician needs to determine whether s/he is detecting sensory change in the mucosa (mucosal sensitivity), or the underlying muscle (muscle tenderness) by attempting to differentiate the depth and firmness of palpation.

FN2.3 Depth of insertion of examining finger has been described for *per vaginam* assessment⁽¹⁷⁾.

FN2.4 Visual observation of the exact position maybe influenced by variations in adipose tissue over the ischial tuberosities⁽²¹⁻²⁴⁾.

 $_{\rm FN2.5}$ As the levator ani are likely to be co-contracting with the superficial PFM, the observed response is unlikely to be due to the superficial PFM layer alone, as the levator ani contraction is likely to be contributing to the observed response.

 $_{FN2.6}$ These movements may be observed alongside perineal elevation and may be better visualized in standing than supine. These observations to be checked against movement of the scrotum and the whole penis.

FN2.7 Modification: the word "excessive" has been removed from the previous definition⁽²⁷⁾ as some downward movement of the perineum is normal with coughing or bearing down such as in defecation.

FN2.8 The term 'non-relaxing PFM'⁽²⁶⁾ was previously used as a diagnosis, however this term describes a sign, and is not recommended to be used as a diagnosis. This sign may be combined with symptoms to inform a clinical diagnosis.

FN2.9 The term 'involuntary relaxation' is not recommended to define perineal movement as it not possible to determine if the downward PFM movement is related to voluntary muscle relaxation or passive elongation of non-contractile tissue.

FN2.10 Some patients will not allow full relaxation during assessment for fear of releasing gas or urine, therefore may voluntarily contract during this test.

FN2.11 Adipose tissue at the ischial tuberosities will affect the measurement⁽²¹⁾.

FN2.12 Perineal elevation with cough is expected but not always present.

 $_{FN2.13}$ Messelink et al described the response of perineal elevation to a rapid increase in IAP as the test for an involuntary contraction⁽²⁶⁾. However it is not possible to say if this is an involuntary or reflex activation of muscle spindles resulting in a contraction, or a voluntary pre-contraction of the PFM before increased IAP. Strategies may differ or be combined⁽³¹⁾.

FN2.14 This manoeuvre is also called "the knack"⁽³²⁾.

FN2.15 A small degree of descent may be normal⁽³³⁾.

FN2.16 Adherent skin could impact function of PFM beneath the scar.

FN2.17 Tender points (2.1.15.1) differ from trigger points (see 2.2.3) therefore the terms should not be used interchangeably⁽³⁶⁾.

FN2.18 This test is also referred to as the "Q Tip test". "Cotton swab" is preferred to avoid proprietary names. FN2.19 Excessive pressure could provoke underlying structures (such as the PFM) misleading the report of pain to vestibular tissues.

 $_{FN2.20}$ Examination tip: in patients with high irritability, it is recommended to test the most severe pain area last to avoid an amplified response due to carry-over irritation as the test progresses^(39,40). In addition if an area provokes increased pain, it is important to wait for the pain to subside before testing other locations. $_{FN2.21}$ This term is listed as a modification of the term in Rogers et al⁽¹²⁾.

FN2.22 In contrast to the bulbocavernosus reflex the anal reflex is a nociceptive reflex and the correct stimulus is painful. If a single stimulus does not activate the reflex, several pricks in a fast sequence should be delivered. It is often difficult to elicit in the elderly, and it should not be declared absent if only a single stimulus is used. A "voluntary" movement away from the (painful) stimulus (pin prick) can usually be interpreted correctly. The patient should be told that painful stimuli are going to be delivered, and usually they can "keep still" and only the reflex contraction of the anal sphincter is observed. It is often absent even in patients without a neural lesion.

FN2.23 Some of the tests performed in the external examination section may be repeated during the internal examination.

FN2.24 Adherent skin could impact function of PFM beneath the scar.

FN2.25 Despite the name (DRE), the purpose of the examination is usually to assess anal canal tissue, not rectal tissue.

 $_{FN2.26}$ DRE may be less useful in male urinary dysfunctions where the urethral sphincter, inaccessible to DRE, has a more important role⁽⁴⁶⁾.

 $_{FN2.27}$ An assessment can be made of a palpable anal sphincter gap to assess if there has been previous obstetric or surgical damage⁽¹¹⁾.

FN2.28 Terms such as short or elevated PFM may not be discernible via digital palpation and are therefore not recommended as sign terms.

FN2.29 If the spasm is painful, this is usually described as a muscle cramp.

FN2.30 Levator hiatus may be better measured with instruments (see Section 3).

FN2.31 <3.5cm may represent a partial avulsion, however digital palpation cannot reliably determine this distance of discontinuity

FN2.32 This term is referring to a sign and not recommended to be used as a diagnosis. This sign may be combined with symptoms to inform a clinical diagnosis.
FN2.33 Endurance training can delay the onset of fatigue⁽⁶⁹⁾.

 $_{\text{FN2.34}}$ Modification from Bo et al⁽²⁷⁾: removal of "at a given percentage of 1 RM" as definition already states "near maximal or maximal force".

FN2.35 This can only be graded if the patient is able to generate a PFM contraction.

FN2.36 Antagonistic contraction has not been included in this document as there is not a muscle whose action counteracts the action of the PFM.

FN2.37 These tests are likely to produce more accurate results if measured using ultrasound imaging.

FN2.38 This test was performed in patients with POP; the same technique may be uncomfortable in women with pelvic floor pain or increased tone.

396

397 SECTION 3: INVESTIGATIONS

398 An investigation is part of the differential diagnostic decision-making process. A PFM investigation 399 is the measurement of the morphometry or function of the PFMs using mechanical or technological 400 methods. The findings may be considered more accurate than findings from a clinical evaluation which 401 relies on digital palpation. Some points to note regarding PFM investigations that should be considered 402 in clinical and research application and interpretation of the finding: all devices are different and may 403 not give the same information of a specific PFM physiological parameter or function. In addition, 404 device specifications and analysis software options influence both the availability and measurement of PFM parameters^(72,73), the size and shape of a probe / sensor / electrode / transducer also influence the 405 interpretation of findings⁽⁷²⁻⁷⁴⁾ and raw values may need to be normalised. New devices to measure 406 407 PFM properties may become available in the near future which do not fit the existing categories 408 entirely, and new categories may need to be added to this living document.

409

3.1 *Dynamometry*: an investigation that measures both muscle power and force. (CHANGED).
Both active (contractile) and passive (non-contractile) forces can be detected.

3.1.a Intra-vaginal PFM dynamometry: Measurement of PFM resting and contractile forces
using strain gauges mounted on a speculum (a dynamometer), which is inserted into the
vagina⁽⁷⁵⁾ (CHANGED).

Several PFM dynamometers have been developed to assess the PFM function in women⁽⁷⁶⁻⁸⁴⁾.. Different configurations have been proposed in terms of the number, shape and the sizes of the branches, the force vector recorded (i.e. antero-posterior, latero-lateral or multi-directional forces) and the device specifications (e.g configuration of strain gauges to avoid a lever-arm effect – the influence of the force location in regards to the gauges). In some dynamometers, the branches can be separated at a constant speed either manually or with a motorised unit to assess the passive

- 421 properties during dynamic stretches^(81,85). Elastometry is a type of intra-vaginal PFM dynamometer
 422 used for this specific application of evaluating the passive properties during dynamic stretches⁽⁸¹⁾.
- 423

424 Table 8 describes the most frequent parameters measured with intra-vaginal dynamometers as well 425 as their definitions, specifications and findings. Parameters can be assessed at different fixed vaginal 426 apertures or during stretching (i.e. while imposing an elongation to the tissues by separating the speculum branches)^(81,84). The parameters measured with the dynamometer alone reflect the 427 summative contribution of the active and passive components of tone. When combined with EMG, 428 it enables the assessment of the differential contributions of tone components⁽⁸⁶⁾, i.e. during passive 429 430 stretch of the PFM, concurrent EMG activity detects any electrogenic contributions. The passive component can then be identified when the EMG remains negligible^(86,87). 431

432

433 Table 8. Parameters and findings evaluated with intravaginal dynamometry

Parameters, specifications (units of measure) and	Outputs and interpretation of
measurement processes	findings
a). Parameters assessed at rest	
3.1.1 Passive forces : the average forces in N recorded at	The finding is the resting forces of the
rest ⁽⁸⁴⁾ . (NEW)	PFMs which are indicative of PFM tone
Specify:	i.e. the summative contribution of the
- opening (distance between the two branches e.g minimal	active and passive components of tone.
opening, selected opening or maximal opening)	
- while stretching (dynamic opening)	
3.1.2 Maximal aperture: the maximal vaginal opening	This aperture can be used to evaluate
in mm or cm of the dynamometer branches, without	the flexibility FN3.1 of the PFMs.
provoking a pain response ⁽⁸⁶⁾ . (NEW)	

3.1.3 Viscoelastic stress relaxation during a static	Higher percentage of force decline is
(sustained) stretch: the percentage loss in passive force	indicative of an enhanced viscoelastic
during the application of a steady stretch over a prolonged	stress relaxation response and muscle
period (e.g. 1 min) ^(85,88) . (NEW)	relaxation. This could be useful in
	quantifying tissue relaxation following
	stretching or lower force decline
	associated with strength training ⁽⁸⁸⁾ .

b). Parameters assessed at rest during dynamic stretching:

Dynamic stretches are applied by repeatedly separating the speculum branches at a constant speed until maximal vaginal aperture (lengthening phase) and then, closing back to the minimal aperture (shortening phase).

3.1.4 Stiffness: the resistance to deformation. Passive	The higher the N/mm value, the stiffer
elastic stiffness is defined as the ratio of the change in the	the muscle. This is a physiological
passive resistance or passive force (ΔF) to the change in	property of muscle which contributes to
the length displacement (Δ L) or Δ F/ Δ L (N/mm) ^(27,43,75)	the overall measurement of tone.
$_{\rm FN3.2.}$ Passive elastic stiffness should be computed for	
specific vaginal apertures ^(81,84) .	
3.1.5 Compliance: the reciprocal of muscle stiffness	The higher the mm/N, the more
$(mm/N)^{(43)}$. (NEW)	compliant the tissue.
3.1.6 Hysteresis : the area between the lengthening and	Increased area indicates higher energy
shortening curves (N x mm). It corresponds to the loss of	dissipated.
energy associated with lengthening of viscoelastic	
tissues ⁽⁸⁵⁾ . (NEW)	
c). Parameters evaluating contractile properties	

3.1.7 Maximal strength: peak force in N generated	Higher peak value indicates higher
during a MVC. (NEW). The resting forces recorded prior	muscle strength.
to the effort are usually subtracted from the peak value ⁽⁷⁸⁾ .	
Specify:	
- the length of hold for the MVC e.g. 10s contraction	
duration	
- how the peak score was obtained, e.g. peak during a	
single MVC, best of or average of 3 contractions.	
3.1.8 Speed of contraction: rate of force development	Higher rate of force (steeper slope) is
measured as the mean slope of the ascending curve in N/s	indicative of a faster generation of
during a fast MVC ⁽⁷⁹⁾ . (NEW)	force.
3.1.9 Speed of relaxation: rate of force reduction	Lower values are indicative of slower
measured as the mean slope of the descending curve in	relaxation.
N/s during PFM relaxation ⁽⁸⁶⁾ . (NEW)	
3.1.10 Number of rapid contractions : see section 2.2.16	Higher number of contractions are
for definition and rating. A contraction must comprise an	suggestive of higher speed of
ascending and a descending phase with the amplitude of	contraction but also better motor
the PFM forces returning to the resting state post	control, as the task requires alternation
contraction ⁽⁷⁹⁾ .	between MVC and complete rest.
3.1.11 Normalised area under the force curve: the area	Higher normalised area is indicative of
under the force curve divided by maximal force and	better muscle endurance.
multiplied by 100 (in % x prescribed s) during a sustained	
MVC ⁽⁷⁹⁾ . (NEW)	

434 Abbreviations: N, Newtons; PFM, pelvic floor muscles; MVC, maximum voluntary contraction.

436 3.2 Myotonometry: an investigation that measures muscle tone characteristics by applying a mechanical impulse to the tissue⁽⁸⁹⁻⁹¹⁾. (**NEW**) The device elicits oscillations of muscle after a probe 437 438 applies a brief mechanical impulse with quick release under constant pre-load to the skin over the 439 muscle belly. Myotonometry has been used externally on the perineum to measure superficial PFM 440 stiffness. It cannot be used intra-vaginally to measure levator ani function as the probe must be 441 perpendicular to the muscle and therefore cannot be used to interpret levator ani function. Table 9 442 describes the most frequent parameters measured with myotonometry that can be computed from the oscillation curve as well as their definitions, specifications and findings⁽⁹²⁾. It should be noted 443 444 that the tissues that lie between the probe and the muscle (e.g. skin, adipose tissues, connective and 445 fascial tissues) can also influence the measurements.

447	Table 9 Parameters and	findings evaluated	with myotonometry

Parameters, specifications (units of measure) and	Outputs and interpretation of
measurement processes	findings
3.2.1 Oscillation frequency : characterises the intrinsic tension	A higher oscillation frequency
of the muscle in its passive or resting state in the absence of	(Hz value) indicates higher muscle
voluntary contraction ⁽⁹³⁾ . (NEW) Measured in Hz.	tone ^(92,93) .
a). Biomechanical properties:	
3.2.2 Stiffness : as defined in 3.1.4 for dynamometry. However,	A higher N/m value indicates
the method of application of the force is different to that	higher muscle stiffness.
described in 3.2.2; with this device, an external sensor applies	
a deformation perpendicular to the tissue.	
3.2.3 Logarithmic decrement: characterises elasticity and	Elasticity is inversely proportional
dissipation of mechanical energy. Measured as $1n (D = ln$	to decrement, therefore, if the
	decrement of a muscle decreases,

$[a1/a3])^{(93)}$. It indicates the ability of the tissue (including	the muscle elasticity increases.
muscle) to recover its shape after being deformed. (NEW)	The smaller the decrement value,
	the smaller will be the dissipation
	of mechanical energy and the
	higher the elasticity of a tissue.
b). Viscoelastic properties:	
3.2.4 Mechanical stress relaxation time: the time for a muscle	The longer the time the more
to recover its shape from deformation after a voluntary	relaxation has occurred in the
contraction or removal of an external force. (NEW). Measured	tissue.
in milliseconds ⁽⁹²⁾ .	
3.2.5 Creep: the gradual elongation of a tissue over time when	The higher the creep, the less
placed under a constant tensile stress. (NEW): Measured by the	elasticity the tissue has and the
the ratio of relaxation time to deformation time (Deborah	more likely is permanent stretch or
number).	deformation.
Abbreviations: Hz, hertz; N/m, newtons/metre.	
3.3 Manometry: an investigation that measures pressure ^(27,75)	

3.3.1 Pelvic floor manometry: Measurement of resting pressure or pressure rise generated
 during contraction of the PFM using a manometer connected to a sensor, which is inserted into
 the urethra, vagina or rectum⁽²⁷⁾..

- **3.3.1.a**) Intra-urethral manometry: Manometry performed via the urethra. One example is
 455 the urethral pressure profile that is undertaken as part of a urodynamic investigation⁽⁹⁴⁾.
 456 (NEW)
- **3.3.1.b) Intra-vaginal manometry**: Manometry performed via the vaginal canal. (**NEW**)
- **3.3.1.c) Intra-anal manometry**: FN3.3 Manometry performed via the anal canal. (NEW)

460 Pelvic floor manometric tools traditionally have measured pressure in mmHg, hPa or cmH₂O, 461 however new and future devices may provide output using different units. It should be specified 462 whether the device is calibrated to zero / atmospheric pressure prior to insertion⁽²⁷⁾. The most 463 common parameters assessed with pelvic floor manometry (intra-vaginal and intra-anal) and 464 their findings are described in Table 10. Several common parameters are illustrated in Figure 4.

459

466

467 Figure 4: Graphical illustration of pelvic floor muscle manometry readings (modified from468 Ingeborg Hoff Braekken).

469

470 Table 10. Parameters and findings evaluated with pelvic floor manometry

Parameters, specifications (units of measure) and	Outputs and interpretation of
measurement processes	findings
a). Parameters assessed at rest	
3.3.1.1 Resting pressure : the pressure recorded at rest in mmHg,	Higher resting pressure may be a
hPa or cmH ₂ O. For greater accuracy, a mean resting pressure	surrogate measure of increased
	PFM tone. However, the value

may be calculated over a specified period to account for	should be interpreted with
fluctuations ^(95,96) . (NEW)	caution as the measurement is
Resting pressure may be influenced by PFM tone (i.e. summative	not limited to pressure
contribution of the active and passive components).	originating from the PFMs (e.g.
	intra-abdominal pressure,
	vaginal tissue scaring, rectal
	contents may contribute to
	resting pressure).
b). Parameters evaluating contractile properties	
3.3.1.2 Peak pressure during a maximum voluntary	Maximal pressure is often used
contraction: highest pressure recorded during a PFM MVC in	as a surrogate of muscle strength
mmHg, hPa or cmH ₂ O. (NEW)	e.g. higher pressure being related
As the pressure measured does not confirm its origin, it is	to higher strength.
important to ensure the validity of intra-vaginal measurement: 1)	
perform vaginal palpation before using the manometer to ensure	
the patient is able to correctly contract her PFMs; 2) observe the	
cranial movement of the vaginal probe during measurement of	
the muscle contraction and 3) ignore contractions associated with	
elevated intra-abdominal pressure (e.g. Valsalva maneuver), hip	
muscle contraction or any movement of the pelvis ^{$(97,98)$} FN3.4.	
Specify:	
- the length of hold for the MVC e.g. 3s/5s/10s contraction	
duration	
- How the peak score was obtained, e.g. peak during a single	
MVC /best of or average of 3 contractions ⁽¹⁰¹⁻¹⁰⁸⁾ .	

3.3.1.3 Time to peak pressure: time in seconds from onset of	Shorter time to peak is indicative
muscle contraction to maximal pressure. (NEW)	of a faster generation of pressure.
3.3.1.4 Speed of contraction: rate of pressure rise measured as	Higher rate of force (steeper
the mean slope of the ascending curve in hPa/s during a fast	slope) is indicative of a faster
MVC. (NEW)	generation of pressure.
3.3.1.5 Speed of relaxation: rate of pressure reduction measured	Lower values are indicative of a
as the mean slope of the descending curve in hPa/s during PFM	slower relaxation.
relaxation. (NEW)	
3.3.1.6 Number of rapid contractions : see 2.2.16 and 3.1.10 for	See 3.1.10 for interpretation.
definitions and ratings.	
3.3.1.7 Time to return to baseline pressure: time in seconds	Longer duration suggests slower
from maximal pressure to relaxation state. (NEW)	relaxation.
3.3.1.8 Duration of a sustained contraction : the length of time	A shorter duration suggests a
in seconds that a contraction can be sustained during MVC or at	lower endurance. Duration of
a specific % of MVC. (NEW).	contraction could be used as an
Specify if it is a maximal contraction or a % of MVC e.g	indication of endurance e.g.
$60\%^{(96,101,104,106,108)}$ and the threshold used to indicate that the	longer contraction being related
target is no longer maintained.	to better endurance.
3.3.1.9 Area under the pressure curve during a sustained	Higher area under the pressure
contraction: the area under the pressure curve in hPa multiplied	curve above resting pressure
by time in s during a sustained MVC or at a specific percentage	reflects better muscle endurance.
of MVC. This represents the total work performed. (NEW).	
Specify the duration of the contraction e.g 10s, 30s, etc. ^(95,107) .	

471 Abbreviations: PFM, pelvic floor muscles; MVC, maximum voluntary contraction.

- **3.3.2 Anorectal manometry** FN3.5: is a pressure test to assess the structure and physiological
 function of the anorectal complex (CHANGED)⁽¹¹⁾. Water perfused and solid-state pressure
 transducers are used in combination with a balloon positioned in the anal canal⁽²⁶⁾. The most
 commonly used PFM parameters and findings are described in Table 11. FN3.6
- 477

478 Table 11. Parameters and findings evaluated with anorectal manometry

Parameters, specifications (units of	Outputs and interpretation of findings
measure) and measurement processes	
a). Parameters assessed at rest	
3.3.2.1 Functional anal length : the length	Functional anal canal length has been shown to be
(mm) of the anal canal over which resting	shorter in females with fecal incontinence and longer
pressure exceeds that of the rectum.	in females with chronic constipation ⁽¹⁰⁹⁾ .
(CHANGED) ⁽¹¹⁾ The length of the canal is	
measured either by station pull-through or	
continuous pull-through ⁽¹¹⁾ .	
3.3.2.2 Maximum resting pressure: the	Internal anal sphincter (IAS) (smooth muscle) is
highest pressure (in mmHg, hPa or cmH ₂ O)	responsible for 55-85% of the anal pressure, and is
along the anal canal measured in the axial	variable along the length of the anal canal with the
plane at a specific point. (CHANGED) ⁽¹¹⁾	proximal two thirds being more reliant on IAS tone to
	maintain adequate resting pressures. Low anal resting
	pressure is associated with passive fecal soiling. High
	anal resting pressure may be a feature of
	constipation ⁽¹¹⁰⁾ .
b). Parameters evaluating contractile proper	rties

3.3.2.3 Maximum pressure during MVC	The pressure increment above resting pressure during
/ maximum squeeze pressure: is the anal	these maneuvers is primarily a representation of EAS
canal pressure (in mmHg, hPa or cmH ₂ O)	function. Range of normative values varies according
measured during maximum voluntary	to the particular measurement device in a
contraction (MVC) in a specific location	laboratory ⁽¹¹⁾ . Decreased voluntary anal sphincter
(CHANGED) ⁽¹¹⁾ .	contraction is associated with fecal incontinence
	especially fecal urgency ⁽¹¹⁰⁾ .
3.3.2.4 Duration of sustained contraction	Shorter duration suggests a lower endurance. To
MVC / endurance squeeze pressure: is	assess the endurance squeeze pressure, measurements
the length of time (in seconds) the	are taken during a 5-10s squeeze. By calculating
individual is able to maintain the pressure	fatigability, the fatigue rate (using reduction of the
during the MVC (CHANGED) ⁽¹¹⁾ .	mean pressure over 1-s periods throughout the
	endurance squeeze) can be derived ⁽¹¹⁾ .
3.3.2.5 Number of rapid contractions : see	See 3.1.10 for interpretation.
2.2.16 and 3.1.10 for definitions and	
ratings.	
3.3.2.6 Involuntary maximum squeeze	• present; numerical values of pressure change may
pressure: the pressure (in mmHg, hPa or	be used to further quantify
cmH ₂ O) created involuntarily by the PFM	• absent; associated with faecal incontinence ⁽¹¹¹⁾
during a maximal cough ⁽¹⁰⁰⁾	
(CHANGED) ⁽¹¹⁾ . FN3.7	
3.3.2.7 Balloon expulsion pressure: the	• increase from resting pressure suggests
anal canal pressure (in mmHg, hPa or	paradoxical contraction (see 4.3.1) and is
and I O) device a starting of the starting	
cmH ₂ O) during straining with a filled	associated with evacuation dysfunctions

	•	decrease from resting pressure (normal)
3.3.2.8 Rectoanal inhibitory reflex	•	present: a drop of at least 25% of resting pressure
(RAIR): the relaxation response in the IAS		has to occur with subsequent restoration to at least
following rectal distension (in mmHg, hPa		two thirds of resting pressure for the RAIR to be
or cmH ₂ O) $^{(11)}$. It is elicited by rapid		deemed present. This reflex is thought to underlie
inflation to first sensation of a balloon		the sampling response that allows rectal contents
positioned in the distal rectum during anal		to be sensed by the anal mucosa, thus ensuring
manometry at the level of the proximal		continence of flatus and stool ^(11,112)
high-pressure zone.	•	absent: seen in Hirchsprung disease, fecal
		incontinence, constipation and after anorectal
		surgery ⁽¹¹⁰⁾

479 Abbreviations: PFM, pelvic floor muscles; MVC, maximum voluntary contraction; IAS internal anal
480 sphincter.

481

3.3.2.9 Vector manometry: a three-dimensional pressure profile of the anal canal.
(CHANGED)⁽¹¹⁾. Measures of total anal canal pressure and symmetry are made. The vector
volume is the volume of the 3D shape generated and provides a value which reflects the
overall length and symmetry of the sphincter.

3.3.2.10 High resolution manometry: complete definition of the intra-anal pressure
environment using a catheter with a large number of pressure sensors spaced less than 0.5 mm
apart along the length of the catheter⁽¹¹⁾.

489 **3.3.2.11 Ambulatory anorectal manometry:** is a test performed using solid-state catheters
 490 in ambulant subjects an over an extended period of time (CHANGED)⁽¹¹⁾.

- **3.4 Electromyography** (EMG): is the recording of electrical potentials generated by the
 depolarization of muscle fiber membranes⁽²⁷⁾. Investigators reporting PFM EMG studies should
 state the position of the patient, the recording equipment⁽²⁶⁾ and conditions used as summarised in
 Box 2. Nerve conduction studies e.g. pudendal nerve testing, are beyond the scope of this document.
- 496
- 497 Box 2: System specifications

Recommendations for reporting EMG studies (based on the recommendations of the International Society of Electrophysiology and Kinesiology⁽¹¹³⁾).

Reports on surface EMG should include:

- electrode material (e.g., Ag/AgCl)

- electrode geometry (discs, bars, rectangular)

- number and size (e.g., diameter, radius, width, length)

- interelectrode distance
- use of gel or paste
- skin/mucosal preparation (e.g. alcohol applied to cleanse skin, skin abrasion, shaving of hair, etc.)

- electrode location, orientation over muscle with respect to tendons, motor point (if known) and muscle fiber direction.

- type of ground electrode used, location.

Reports on intramuscular wire electrodes should include:

- wire material (e.g., stainless steel)
- if single- or multi-strand
- if single or bipolar wire
- interelectrode distance
- insulation material

- length of exposed tip		
- method of insertion (e.g., hypodermic needle)		
- depth of insertion/method of insertion guidance		
- location of insertion in the muscle		
- type of ground electrode used, location.		
Amplifiers should be described by the following:		
- type (monopolar, differential, double differential, etc.)		
- pre-amplification at the level of the electrode		
- input impedance		
- Common Mode Rejection Ratio (CMRR)		
- actual gain range used.		
Filtering of the raw EMG should be specified by: FN3.8		
- low and/or high pass filter properties (e.g. cut-off frequencies, order)		
- filter types (e.g., Butterworth, Chebyshev, Notch, etc.)		
- notch filter		

Important considerations when interpreting EMG signals: Baseline and contractile sEMG amplitude is affected by properties of the electrode, configuration of electrodes, recording system and patient/individual characteristics. Raw amplitude cannot be compared between individuals because the signal's amplitude is affected by many factors (e.g. cutaneous/mucosal tissue thickness, vaginal lubrication, positioning/direction of electrodes with respect to the muscle and muscle fibres, and properties of the detection system⁽¹¹⁴⁻¹¹⁶⁾). As a consequence, normalisation of the sEMG amplitude is considered critical when comparing data across individuals⁽¹¹⁷⁾.

498

3.4.a) Artefact: extraneous information in the EMG signal from sources other than the target
muscle, such as the environment (e.g. electromagnetic radiation) or other body functions.

- 508 Artefact examples include movement or contact quality artefact, heart rate, skin electrode shear, 509 and electrode bridging (**CHANGED**)⁽²⁷⁾.
- **3.4.b**) Cross talk: muscle activity from nearby muscles that can contribute to the recorded EMG
 amplitude and be misinterpreted as PFM activation⁽²⁷⁾. FN3.9
- 512 3.4.1 Intramuscular EMG: is a recording of motor unit action potentials using needle (concentric or monopolar) or wire electrodes inserted into muscles^(75,119). (CHANGED)⁽²⁷⁾. This 513 is not typically used in clinical assessment. The electrodes can be inserted to assess the 514 515 superficial (e.g. bulbocavernosus) and deep layers (e.g. levator ani) of the PFMs as well as the urethral and anal sphincters⁽¹²⁰⁾. This assessment as a rule focuses on the motor units to 516 517 investigate motor unit physiology and pathophysiology. Parameters evaluated with concentric 518 needle EMG can be used to differentiate between normal, denervated, reinnervated and myopathic muscle^(121,122)Quantitative EMG includes analysis such as the multi-motor unit 519 potential analysis⁽¹²²⁾ and the interference pattern analysis (turns/zero crossing or amplitude)⁽¹²²⁾. 520 521 **3.4.2 Surface electromyography (sEMG):** is a recording of motor unit action potentials using
- surface electrodes placed on the skin or mucosa close to the muscle of interest. Recordings are
 also used in assessment of the activation pattern/'behaviour' (sometimes referred to as
 kinesiological electromyography) of a particular muscle during a defined activity⁽¹²¹⁾. sEMG
 requires electrodes placed on the skin of the perineum or inside the urethra, vagina or rectum
 (CHANGED)^(12,27). Parameters and findings evaluated with sEMG are described in Table 12.
 Several common parameters are illustrated in Figure 5.
- 528

530 Figure 5: Parameters measured using electromyography

532	Table 12. Parameters and findings evaluated with sEMG

Parameters, specifications (units of measure)	Outputs and interpretation of findings
and measurement processes	o avpano ana mor promion or mango
a). Parameters assessed at rest	
3.4.2.1 Baseline muscle activity : the amount of	3.4.2.1.1 Inconsistent resting baseline: the
microvolts generated by activation of motor units	variation of baseline between contractions,
in the target muscle during rest ^(27,75) . FN3.10, FN3.11	between sets, or between days ^(27,75) .
	3.4.2.1.2 Elevated resting activity: an increase
	in the active component of muscle tone; (the
	passive/viscoelastic component is not captured
	by sEMG). (NEW .
b). Parameters evaluating contractile properties	
3.4.2.2 Signal amplitude : microvolts (μ V) a	sEMG amplitude reflects muscle activation ⁽¹¹⁷⁾ .
muscle generates ⁽²⁷⁾ .	Increase in sEMG amplitude is related to the
Specify:	recruitment of motor units and increased firing

- MVC contraction duration (s) - how the signal	rate ⁽¹¹⁸⁾ . The amplitude of the signal should not
was processed. Signals are usually rectified and	be interpreted as a direct force measurement
filtered to measure amplitude ⁽¹¹⁴⁾ i.e. average	because the relationship between force and
rectified value or root-mean-square ⁽¹¹⁴⁾ .	EMG is generally not linear and is affected by
3.4.2.3 Peak amplitude: the highest sEMG	type of contraction
amplitude achieved measured in microvolts ^(27,75) .	(concentric/isometric/eccentric), speed of
Specify the duration (s). Measured during an	contraction.). During strength training, early
MVC or functional activities such as postural	gains in force output are mainly related to an
tasks or incontinence provocative	increase in motor unit recruitment and discharge
activities ^(125,126) . FN3.12	frequency which will result in a higher signal
3.4.2.4 Normalization of the amplitude: the	amplitude. Later gains explained by
value obtained during a specific task as a percent	hypertrophy ⁽²⁷⁾ are not reflected in increased
relative to the electrical activity detected during a	sEMG amplitude
MVC ^(113,117) . (NEW)	
3.4.2.5 Time to peak muscle activation: time in	3.4.2.5.1 Slow recruitment: a longer time to
ms or s from onset of muscle activity to peak	peak muscle activation in s or a slower rate of
activity. (NEW)	change ⁽¹²⁷⁾ (CHANGED) ⁽²⁷⁾ . FN3.13, FN3.14
Rate of change: the mean slope of the ascending	
curve in μ Vs during a fast MVC. (NEW)	
3.4.2.6 Reaction time : the latency (time in ms)	3.4.2.6.1 Slow reaction time: a longer time to
between a stimulus (or the command) and the	initiate muscle activation. (NEW)
onset of muscle activation ⁽¹²⁸⁾ . (NEW) FN3.15	
3.4.2.7 Time from command to peak: time in ms	
from stimulus to peak activity. (NEW) This term	

encompasses both the reaction time and the time	
to peak muscle activation.	
3.4.2.8 Time to return to baseline muscle	3.4.2.8.1 Slow de-recruitment : slow
activity: time in s from peak activity to resting	relaxation of the muscle contraction ⁽²⁷⁾ .
activity. (NEW)	
Rate of change: the mean slope of the descending	
curve in uV/s during a fast MVC.	
3.4.2.9 Rate of change of amplitude during	A higher rate of change will be indicative of
sustained contraction: the change in sEMG	lower endurance.
amplitude divided by the duration of the	
contraction: $EMG_{final} - EMG_{initial}/time(s)^{(129)}$.	
(NEW). The contraction could be sustained or	
intermittent at different % of MVC ⁽¹²⁹⁾ .	
3.4.2.10 Timing of muscle activity : onset of the	• normal
activation in milliseconds can be assessed in	• delayed: delayed activation of the PFM
relation to onset of activation in other muscles,	relative to the onset of a cough or a postural
provocative activities or other aspects of a task.	perturbation has been found in women with
(NEW)	stress urinary incontinence ⁽¹²⁶⁾
3.4.2.11 Duration of a sustained contraction:	A shorter duration suggests lower endurance.
the duration in seconds that a contraction could be	
sustained at a specific % of MVC ⁽¹²⁹⁾ . (NEW)	
3.4.2.12 Power spectrum: the distribution of	The median frequency of the sEMG power
frequency components of the sEMG signals,	spectrum shifts to lower frequencies as a muscle
measured in $Hz^{(114)}$. (NEW)	fatigues due to altered muscle fiber recruitment

and	other	changes	in	the	contractile
prope	erties ⁽¹³⁰⁾	,131)			

Abbreviations: sEMG, surface electromyography; MVC, maximum voluntary contraction; PFM,
pelvic floor muscles; uV microvolts.

535

3.5 Imaging: refers to the process of creating images using high-energy modalities to allow visualization of body tissues. Imaging provides tissue-specific evaluation to identify if morphological properties (e.g. trauma or deficit) are present, which may relate to an individual's presenting symptoms^(27,75). In this document, we focus on ultrasound and MRI assessment and the terms related to PFM morphology and function, as well as the influence of other structures on PFM support and contractility investigated using these tools. It is not within the scope of this document to describe imaging of organ structures.

543 **Ultrasound imaging:** Pelvic floor ultrasound imaging measures PFM morphology and function 544 via trans-abdominal, trans-perineal, trans-vaginal and trans-anal placement of the transducer 545 (CHANGED).^(12,43). This investigation applies diagnostic techniques taken in B-mode that use 546 high-frequency sound waves to image internal structures. The image is formed by the differing 547 reflection signals produced when a beam of sound waves is projected into the body and bounces 548 back at interfaces between those structures. Ultrasound evaluation may be undertaken as:

3.5.1.a) Two-dimensional (2D) ultrasound: the transducer sends and receives ultrasound
waves in one anatomical plane. The reflected waves are used to generate grey scale images
of structures in the field of view in this anatomical plane.

3.5.1.b) Three-dimensional (3D) ultrasound: creates volume data from multiple 2D images
which are gathered by reflected waves at a variety of angles. Software integrates this
information to create a single static 3D image.

- **3.5.1.c**) Four-dimensional (4D) ultrasound: is similar to 3D US, but the image is repeated at
 intervals over time. This technique requires the use of a 3D/4D transducer and enables realtime visualization of 3D images.
- **3.5.1.d**) Tomographic ultrasound: is viewing US imaging in sections. It allows the depiction
 of arbitrarily defined planes from volume data obtained in 3D or 4D US^(132,133).
- 560 Measurements are best understood by referring to anatomical planes of the body, i.e coronal 561 (frontal), sagittal and axial (horizontal or transverse) planes.
- 562
- 563 **3.5.1.1 Trans-abdominal pelvic floor ultrasound**: A 2D imaging technique to scan pelvic 564 floor structures, using a convex transducer is placed in the supra-pubic region. (NEW) It can 565 be oriented longitudinally to measure bladder base displacement in the mid-sagittal or 566 parasagittal plane or oriented transversely to measure bladder base symmetry and 567 displacement in the transverse plane. Trans-abdominal pelvic floor ultrasound is primarily 568 used in clinical settings rather than for research purposes due to limitations measuring the 569 image (no bony landmarks in view and difficulties for operator to keep transducer in plane -570 operator error is high). Artefact in measurement may also occur with incorrect PFM 571 contraction when abdominal muscle contraction occurs (which pushes the transducer 572 ventrally) and varying levels of bladder fullness (adherence to a fluid intake protocol may 573 mitigate this limitation). Poor agreement between transverse and sagittal findings suggests 574 measurement in the two planes evaluate displacement at different locations during a PFM contraction⁽¹³⁴⁾.⁽¹³⁴⁾. Table 13 describes the parameters and anatomical landmarks evaluated 575 576 in the mid-sagittal plane, during different activity states of the PFM: rest, contraction and 577 bearing down.
- 578

579 Table 13. Parameters and findings evaluated with trans-abdominal ultrasound imaging in the mid-

580 sagittal plane

Parameters, specifications	Outputs and interpretation of findings	
(units of measure) and		
measurement processes		
3.5.1.1.1 Bladder base	PFM contraction: Displacement from rest of the bladder base	
displacement FN3.16: a marker is	during (attempted) PFM contraction ⁽¹³⁶⁾ :	
placed at the point of greatest	• Elevation (normal response): movement of the bladder base	
displacement (mm or cm) of the	in a cephalad and ventral direction toward the pubic bone	
infero-posterior bladder wall at	infers contraction of the levator ani/puborectalis	
rest and at maximal contraction • No change		
or bearing down ⁽¹³⁵⁾ . Direction	• Descent: movement of the bladder base caudal and posterior	
and displacement of the bladder	away from the pubic bone infers elevated intra-abdominal	
base movement from rest to final	pressure – PFMs may be active but this cannot be confirmed.	
position. (NEW). The bladder	Bearing down: Displacement of the bladder base during	
base is the most infero-posterior	sustained increased intra-abdominal pressure:	
aspect of the bladder wall.	• Elevation	
	• No change	
	• Descent	

581 Abbreviations: PFM, pelvic floor muscles.

582

Parameters and findings evaluated with trans-abdominal imaging in the transverse plane –
during different activity states of the PFM (rest, contraction and bearing down) – are described
in Table 14.

587 Table 14. Parameters and findings evaluated with trans-abdominal ultrasound imaging in the transverse

588 plane

Parameters, specifications (units	Outputs and interpretation of findings		
of measure) and measurement			
processes			
3.5.1.1.2 Symmetry of the	<i>Rest:</i> Symmetrical or asymmetrical. Asymmetry can be related		
bladder base: equal curvature of	to unilateral increased tone, unilateral decreased tone, operator		
bladder base with probe placed in	n error in probe position, or asymmetry of passive support (e.g.		
the transverse plane. (NEW)	unilateral ligament damage/trauma). FN3.17		
3.5.1.1.3 Bladder base	PFM contraction: Displacement of the bladder base during		
displacement FN3.18: see 3.5.1.1.1.	attempted PFM contraction:		
Movement of the bladder base (in	• Elevation (normal response): movement of the bladder		
mm or cm) is used as a surrogate	te base in a cephalad/ventral directionNo change		
measure for activity of the PFM.	he PFM. • Descent: movement of the bladder base in a caudal/dorsal		
	direction		
	Bearing down: Displacement of the bladder base during		
	sustained increased intra-abdominal pressure:		
	Elevation		
	• No change		
	• Descent (normal response)		

589 Abbreviations: PFM, pelvic floor muscles.

590

591**3.5.1.2 Introital pelvic floor ultrasound:** 2D/3D/4D imaging technique to scan pelvic floor592structures using an endocavity3.19 transducer placed against the vaginal introitus/vulva or593perineum⁽⁴⁾. (NEW) The transducer may be oriented ventrally/anteriorly to assess the pelvic

floor structures (prolapse, levator ani muscle anatomy and function, and periurethral area), or
oriented posteriorly to assess the anal sphincter structures.

596 **3.5.1.3 Perineal pelvic floor ultrasound**: 2D/3D/4D imaging technique to scan pelvic floor 597 structures using a convex transducer placed against the perineum/vulva⁽⁴⁾. (**NEW**) The 598 transducer may be oriented longitudinally/sagittally (for bladder neck/urethra, prolapse, and 599 levator ani muscle assessment), or oriented transversely (for assessment of anal canal, 600 sphincters). The terms transperineal and translabial ultrasound are both used to refer to 601 perineal ultrasound.

602

Parameters and findings evaluated with perineal and introital pelvic floor ultrasound – during
different activity states of the PFM or actions (rest, contraction and bearing down) – are
presented in Table 15.

Table 15. Parameters and findings evaluated with perineal and introital ultrasound imaging assessed in the mid-sagittal plane using a 2D/4D transducer oriented longitudinally/sagittally.

Outputs and interpretation of						
findings						
a) Parameters and anatomical landmarks assessed in the mid-sagittal plane using a 2D/4D						
transducer oriented longitudinally (f)						
Rest: Quantification of bladder						
neck position at rest from the						
horizontal and vertical distances						
from the PS ^(138,145) Resting						
position of the bladder neck was						

relative to a horizontal reference line (measured in mm or cm). training $^{(143)}$. (NEW)

Specify if using:

the infero-posterior margin (Figure 6)⁽¹³⁸⁾ _{FN3.20}, the lowest margin⁽¹³⁹⁾, or the central axis (line drawn from the anterior to the posterior margin) of the PS (Figure 7) $^{(140)}$;

the middle of the proximal urethra for the internal meatus⁽¹⁴¹⁾, the anterior bladder neck⁽¹⁴²⁾ or equidistant points along the urethra from bladder neck to external urethral meatus⁽¹⁴³⁾.

Figure 6: Perineal ultrasound parameters and anatomical landmarks assessed in the mid-sagittal plane using a horizontal reference line drawn from infero-posterior margin of the pubic symphysis.

found to be higher after PFM

PFM contraction: Cranioventral displacement of the bladder neck (18) measured as: a decrease in x-value and increase in y-value. The ventro-cranial displacement of the bladder neck is measured as displacement = $\sqrt{\Delta x^2}$ + $(\Delta y^2)^{(141,145)}$. The higher the value, the greater the ventro-cranial displacement of the bladder neck (bladder neck lift), which reflects action the lifting of the

PFM^(141,146-148).

Bearing down: On bearing down with the instruction to relax the PFM, the dorso-caudal displacement is measured at the point of maximal displacement during the manoeuvre $^{(145)}$. As the proximal urethra descends, the xvalue increases and the y-value decreases. The higher the value,

	the greater the dorso-caudal
	displacement of the bladder neck
	(bladder neck descent or
Bladder neck Gamma angle	mobility) ^(18,141,148) . Higher
Reference line	mobility is observed in
of the public of the public symphysis	incontinent women.
Figure 7: Perineal ultrasound parameter (gamma angle) assessed	
in the mid-sagittal plane using a reference line drawn from the	
anterior to the posterior margin of the pubic symphysis ⁽¹⁴⁴⁾ .	
3.5.1.3.2 Angle γ (Gamma)/Pubo-urethral angle: is the angle	<i>Rest:</i> Quantification of the angle
(in degrees) between the bladder neck and a line drawn from the	at rest ⁽¹⁴⁹⁾ .
anterior to the posterior margin of the pubic symphysis ⁽¹⁴⁴⁾	PFM contraction: a change of
(NEW) (see Figure 7).	the angle γ from rest to a
	maximal PFM contraction. A
	reduction of the angle is
	expected as the bladder neck
	displaces ventrally and caudally.
	Bearing down: method to assess
	bladder neck
	descent/mobility ⁽¹⁴⁴⁾ . A larger
	angle indicates a greater descent
	of the bladder neck ⁽¹³⁸⁾ , which
	has been related to incontinence.

3.5.1.3.3 Perineal body: should appear as a triangular shaped,	Indicates if the integrity of the
slightly hyperechoic (white) structure anterior to the anal	perineal body is normal or
sphincter ⁽¹¹⁾ .	compromised.
3.5.1.3.4 Levator plate angle: the angle (in degrees) between a	Rest: Quantification of the
horizontal reference line at the level of the infero-posterior	levator angle at rest. Elevated
margin of the PS intersecting a line from the infero-posterior	levator plate angle may be
margin of the PS to the anorectal $angle^{(145,150)}$. (NEW) (see	indicative of increased tone in
Figure 6)	the $PFM^{(147)}$.
	PFM contraction: An increase of
	the levator plate angle in
	comparison to the angle at rest.
	Levator plate excursion is
	calculated by subtracting the
	angle at rest from the angle
	during contraction ⁽¹⁴⁷⁾ .
	Bearing down: A decrease of the
	levator plate angle in comparison
	to the angle at rest. Levator plate
	excursion is measured as per
	contraction, smaller angle is
	expected ⁽¹⁴⁵⁾ .
3.5.1.3.5 Levator hiatus length: the distance (mm or cm)	Rest: Quantification of the
between the infero-posterior margin of the pubic symphysis to	levator hiatus? at rest. Smaller
the anorectal angle, representing the levator hiatus antero-	levator plate length could be

posterior diameter in the mid-sagittal view ^(146,150) . (NEW) (see	suggestive of high tone in
Figure 6)	PFM ⁽¹⁴⁷⁾ .
	PFM contraction: A reduction of
	the levator hiatus It has been
	demonstrated to reflect a PFM
	contraction ^(137,149) .
	Bearing down: An increase of
	the levator plate length is
	expected.
3.5.1.3.6 Anorectal angle: the angle (in degrees), formed by the	Rest: Quantification of the
longitudinal axis of the anal canal and the posterior rectal	anorectal angle at rest. Smaller
wall ⁽¹¹⁾ .	anorectal angle could be
	suggestive of increased tone in
	the PFM ⁽¹⁴⁷⁾ .
	PFM Contraction: A reduction
	in the anorectal angle during a
	PFM contraction. The excursion
	of the anorectal angle is
	calculated as the angle during
	contraction of the levator ani
	muscle minus the angle at rest.
	Larger excursion could be
	suggestive of stronger activation
	of the PFM ^(147,151,152) .

Bearing down: Widening of the
anorectal angle is expected ⁽¹⁵²⁾ .
If absent, PFM dyssynergia may
be present.

b). Parameters and anatomical landmarks assessed in the mid-sagittal plane using a 2D transducer oriented longitudinally/sagittally (m)

Displacement or position (in mm or cm) of anatomical landmarks are assessed to interpret activation of individual PFM^(28,30).

3.5.1.3.7 Urethro-vesical junction: The point of maximal inflection of a line drawn along the dorsal border of the urethra and the bladder neck^(28,30). **(NEW)**

3.5.1.3.8 Anorectal junction: The ventral-most point of a line drawn along the ventral aspect of the rectum at the anorectal junction. (**NEW**)

For the displacement of the anatomical landmarks described below, the displacement during contraction and cough are measured in relation to the resting position values^(28,154). Movement of these landmarks has been correlated with activation of levator ani (puborectalis)⁽²⁸⁾

For 3.5.1.3.7 and 3.5.1.3.8:

Rest: The position of these landmarks in the caudo-cranial and antero-posterior planes can be quantified relative to the dorsal pole of the PS at rest (see Figure 8). Lower resting position has been observed in incontinent men⁽¹⁵⁴⁾.

Figure 8: Parameters and anatomical landmarks assessed in the	PFM contraction: Cranio-
mid-sagittal plane using a 2D transducer oriented	ventral displacement is
longitudinally/sagittally in men (reproduced with permission	expected ^(28,155) .
from Stafford et $al^{(153)}$).	Cough: Caudal-dorsal motion
Legend:	can be observed during the
This figure overlays two images illustrating the anatomy at rest	pressurization phase of cough
(continuous lines) and during maximal pelvic floor contraction	due to levator ani muscle
(dotted-lines).	lengthening (probable eccentric
	contraction, but this cannot be
	confirmed from US imaging)
	during the phase when intra-
	abdominal pressure increases.
	This is followed by cranial-
	ventral displacement that occurs
	due to PFM shortening
	(concentric contraction).
3.5.1.3.9 Bulb of the penis: the dorsal-most point on a line	<i>Contraction:</i> Cranio-ventral
drawn around the bulb of the corpus cavernosum penis. (NEW)	displacement is expected due to
	bulbocavernosus
	shortening ^(28,30,154) .
	Cough: Cranio-ventral
	displacement is expected due to
	bulbocavernosus shortening ⁽³⁰⁾ .

3.5.1.3.10 Mid-urethra: A point on the ventral border of the	<i>PFM contraction:</i> Dorsal	
membranous urethra that undergoes the greatest dorsal	displacement is expected due to	
movement during contraction. This point is located within 2.5	striated urethral sphincter	
mm either side of a line drawn between the dorsal pole of the	shortening ^(28,30) .	
pubic symphysis and the most dorsal aspect of the bulb of the	Cough: Dorsal displacement of	
penis (NEW) (see Figure 8).	the mid-urethra due to striated	
	urethral sphincter	

shortening^(28,30).

c). Parameters and anatomical landmarks assessed in the axial plane using the 4D transducer oriented longitudinally (f)

3.5.1.3.11 Hiatal dimensions: cross-sectional area of the pelvic floor/levator hiatus, including antero-posterior and transverse distances⁽²⁷⁾ Measured in the plane of minimal hiatal dimensions⁽¹⁸⁾. A transverse view is obtained and the plane of minimal hiatal dimensions is identified by moving the field of view cranially and caudally until the distance between the hyperechogenic posterior aspect of the PS and the hyperechogenic anterior border of the pubovisceral muscle is at a minimum⁽¹⁵⁶⁾.

3.5.1.3.11.1 Levator hiatus antero-posterior diameter: the	Findings below apply to all	
distance (in mm or cm) delineated from the PS (anteriorly) to the	measurements of hiatal	
edge of the of the puborectalis muscle (posteriorly). (NEW)	dimensions.	
3.5.1.3.11.2 Levator hiatus left-right / latero-lateral /	Rest: Quantification of the	
transverse diameter: latero-lateral diameter of the levator	levator hiatus diameters/area at	
hiatus (in mm or cm) in the plane of minimal hiatal dimensions.	rest. Smaller diameter/area has	
(NEW) The diameter from right to left is measured at the widest	been observed in women with	
part, and perpendicular to the antero-posterior diameter $^{(11,148)}$.	pelvic pain and is may suggest	
	increased tone in the PFM ⁽¹⁴⁷⁾ .	

3.5.1.3.11.3 Levator hiatus area: defined and measured as the	Conversely, a larger hiatus has
area (in mm ² or cm ²) bordered by the pubovisceral muscle, PS	been observed in women with
and inferior pubic ramus in the plane of minimal hiatal	pelvic organ prolapse.
dimensions ⁽¹⁴⁸⁾ . (NEW)	PFM contraction: A reduction
	of the area/diameter is expected
	during a maximal PFM
	contraction. Hiatus reductions
	during contraction can be
	calculated as the percentage of
	change from baseline (i.e.,
	levator hiatus
	narrowing = (levator hiatus at
	rest-levator hiatus at
	contraction)/levator hiatus at
	rest $x100$) ⁽¹⁴⁷⁾ .
	Bearing down: An increase in
	the levator hiatus diameter/area
	is expected on bearing down
	with the instruction to relax the
	PFM ⁽¹⁵⁶⁾ . The difference (or
	percentage of change) between
	the diameter at rest and on
	bearing down determines the
	degree of hiatal distension ⁽¹¹⁾ .
	Higher distension has been

	observed in women with pelvic	
	organ prolapse ⁽¹⁵⁷⁾ .	
3.5.1.3.12 Maximal levator ani muscle thickness: is the	Provides morphologic	
maximum diameter of the levator ani muscle measured in two	measurements of the muscle	
locations bilaterally (in mm or cm). (NEW) (see Figure 9). This	diameter and area at rest ⁽¹⁵⁶⁾ .	
is usually located $1 - 1.5$ cm above the minimal levator hiatus	Rest: increased thickness has	
dimension. Measured perpendicular to the presumed levator ani	i been observed after PF	
bre direction ^(148,156) . Increased th		

3.5.1.3.13 Levator ani muscle cross-sectional area: is the area (in mm² or cm²) delineated by tracing the outline of the levator ani muscle at the level of maximal muscle thickness (NEW)

may be indirectly related to

strength⁽¹⁵⁸⁾.

Figure 9: Levator hiatal dimensions measured using perineal ultrasound.

Figure legend:

LHarea: levator hiatus area

LHtransverse: levator hiatus transverse diameter

LHap: levator hiatus antero-posterior diameter		
t: pubovisceral thickness		
	2512141 0	
3.5.1.3.14 Integrity of the anterior/medial fibers of the	3.5.1.3.14.1 Complete avulsion	
levator ani: To assess if a disruption or disconnection of the	FN3.21 is diagnosed when the 3	
insertion is present, direct the patient to perform a PFM	central slices show a loss of	
contraction, and identify the plane of minimal hiatal dimensions	integrity or defect in the	
at maximal PFM contraction. Use this plane for tomographic	anterior/medial fibre of the	
ultrasound imaging of the puborectalis component of the levator	levator ani muscle on the inferior	
ani, with an interslice interval of 2.5 $mm^{(4)}$. (NEW)	pubic ramus resulting in a	
	levator-urethra gap ⁽⁴⁾ (NEW). A	
	gap of more than 2.5 cm has been	
	suggested as an indicator of	
	avulsion ⁽¹⁵⁹⁾ .	
	3.5.1.3.14.2 Partial avulsion: is	
	diagnosed when at one or two of	
	the 3 central slices show a loss of	
	integrity/defect of the medial	
	fiber of the levator ani muscle	
	(CHANGED) ⁽²⁷⁾ .	
3.5.1.3.15 Urethral sphincter volume: ultrasound imaging of	Smaller sphincter volume is	
the urethral sphincter (morphometry of the rhabdosphincter) ⁽¹⁸⁾ .	related to urinary incontinence	
(NEW) The internal sphincter volume (in mm ³ or cm ³) including	severity ⁽¹⁶³⁾ and urethral	
the longitudinal smooth muscle and the lumen is seen as a	pressure ⁽¹⁶²⁾ . PFM training	
hypoechoic (black) core whereas the external sphincter volume		

or the circular striated muscle of the rhabdosphincter is seen as a	results in increased sphincter
hyperechoic (white) ellipsoid structure ⁽¹⁶⁰⁻¹⁶²⁾ .	volume ⁽¹⁶⁴⁾ .
d). Parameters and anatomical landmarks assessed with tomog	raphic ultrasound imaging plane
using the 4D transducer oriented transversely	
3.5.1.3.16 Integrity of the anal sphincter complex: assessment	<i>PFM contraction:</i> A
of the internal and external anal sphincter to identify	'significant' defect is diagnosed
presence/absence of a defect (measured in degrees). (NEW).	if four out of these six slices
Using tomographic ultrasound imaging, the anal canal is	show a defect in $>30^\circ$ of the
visualised in the mid-sagittal plane and a set of 8 transverse slices	circumference of the external
is placed to encompass the entire external anal sphincter by	anal sphincter ^(4,166) .
locating one slice cranial to the external anal sphincter (at level	
of puborectalis, Slice 1) and another caudal to the internal anal	
sphincter (at level of subcutaneous part of external anal	
sphincter, Slice 8), leaving six slices to delineate the entire	
muscle (Slices 2–7) (see Figure 10). Interslice interval is varied	
depending on external anal sphincter dimensions ^(165,166) .	
Figure 10: Assessment of the integrity of the anal sphincter	
complex assessed with tomographic ultrasound imaging plane	
(reproduced with permission from Guzman Rojas et al. ⁽¹⁶⁵⁾).	

Abbreviations: *f*, females; *m*, males; *PS*, pubic symphysis; PFM, pelvic floor muscles; MVC,
maximum voluntary contraction.

- **3.5.1.4 Endovaginal pelvic floor ultrasound**: an endocavity transducer is inserted into the613vagina (rotational mechanical probe or radial electronic probe)⁽⁴⁾ to assess pelvic floor614morphology. (NEW) It can be used to evaluate bladder neck/urethra, levator ani muscle, anal615canal, and sphincters during different activity states of the PFM (rest, contraction and bearing616down), as described in Table 16 below.
- Table 16. Parameters and findings evaluated with endovaginal ultrasound imaging

Parameters, specifications (units of measure)	Outputs and interpretation of findings
and measurement processes	
a). Parameters and anatomical landmarks assessed in the sagittal plane (2D)	
3.5.1.4.1 Levator plate position: the distance (in	Rest: Quantification of the distance between
mm or cm) between the levator plate and	the levator plate and the probe with the PFM
endovaginal probe ⁽¹⁶⁷⁾ . (NEW)	at rest.
	<i>PFM contraction:</i> A reduction of the distance
	between the levator plate and the probe is
	expected during a maximal PFM contraction;
	may be called levator plate lift. A greater
	levator plate lift ratio (lift/rest x 100) detected
	by dynamic endovaginal sonography has been
	associated with higher PFM strength as
	determined by the Modified Oxford Scale ⁽¹⁶⁷⁾ .
3.5.1.4.2 Perineal body: see 3.5.1.3.3. The depth	<i>Rest:</i> Visibility of the structure and biometric
--	--
(antero-posterior diameter) and height (supero-	measurements are identified at rest; indicate if
inferior diameter) of the perineal body can be	the perineal body is visible or not visible ⁽¹⁶⁸⁾ .
measured in mm or cm in this plane ^(11,168) .	
3.5.1.4.3 Anorectal angle: see 3.5.1.3.6.	Rest: Quantification of the anorectal angle at
	rest ⁽¹⁶⁹⁾ .
b). Parameters and anatomical landmarks assessed	in the axial plane (3D)
3.5.1.4.4 Hiatal dimensions: measurements of the	
following parameters are taken in the place of	
minimal hiatal dimension ⁽⁵⁹⁾ , as described in Table	
17.	
3.5.1.4.4.1: Hiatal antero-posterior diameter:	Rest: Quantification of the levator hiatus
antero-posterior diameter (in mm or cm) of the	diameters/area at rest ⁽⁵⁹⁾ .
levator hiatus measured at the level of minimum	
dimension (NEW)	
3.5.1.4.4.2 Hiatal transverse diameter: the	
diameter (in mm or cm) from right to left is	
measured at the widest part, and perpendicular to	
antero-posterior diameter (NEW)	
3.5.1.4.4.3 Hiatal area: defined and measured as	
the area (in mm^2 or cm^2) bordered by the	
pubovisceral muscle, PS and inferior pubic ramus	
in the plane of minimal hiatal dimensions. (NEW)	
3.5.1.4.5 Levator ani thickness : defined as the	Rest: Provides morphologic measurements of
diameter of the levator ani muscle (in mm or cm) at	the levator ani diameter.

the '9 o'clock' and '3 o'clock' positions ⁽⁵⁹⁾ as	
described in Table 15. (NEW)	
3.5.1.4.6 Levator plate angle: the angle (in	Rest: This angle quantifies the levator plate
degrees) between the reference line and the plane	position in reference to the pubic bone and the
of minimal levator hiatal dimensions / anorectal	perineal body ⁽¹⁶⁹⁾ .
angle, identified via a multiplanar view ⁽¹⁶⁹⁾ . (NEW)	
3.5.1.4.7 Levator ani deficiency: assessed from a	Rest: The muscles on each side for each
3D volume. Individual levator ani muscles are	subgroup are scored based on thickness and
evaluated in their specific axial plane where the full	detachment from the pubic bone:
length of muscle can be visualised ^(170,171) . (NEW)	• $0 = \text{no defect}$
	• $1 = \text{minimal defect with} < 50 \%$ muscle
	loss
	• $2 =$ major defect with >50 % muscle loss
	• $3 = $ total absence of the muscle
	Significant levator ani deficiency is defined as
	a total score within the range of $12-18^{(170,171)}$.
3.5.1.4.8 Perineal body: this anatomical structure	as per 3.5.1.3.3
is visualized as an ovoid-shaped, mixed	
echogenicity structure. The width (latero-lateral	
diameter) (in mm or cm) of the perineal body can	
be measured in the axial plane ⁽¹⁶⁸⁾ .	

619 Abbreviations: PFM, pelvic floor muscles; *PS*, pubic symphysis

3.5.1.5 Endoanal ultrasound (EAUS): An endocavity transducer is inserted into the anus
622 (linear array 3600 3D transducer or radial array 3600 3D transducer)⁽⁴⁾. (NEW) It can be used

to assess the external anal sphincter (EAS) and internal anal sphincter (IAS). Parameters and findings evaluated with endoanal ultrasound imaging - during different activity states of the 624 PFM (rest, contraction and bearing down) – are described in Table 17. 625

- 626
- 627 Table 17. Parameters and findings evaluated with endoanal ultrasound imaging

Parameters, specifications (units of measure) and measurement processes	Outputs and
	interpretation
	of findings
3.5.1.5.1 Anal sphincter defect (or pathology): assessment of the internal and	Indicate if
external anal sphincters to identify presence/absence of a defect; observed in cross-	defect is
sectional images of the anal sphincter. (NEW) This measure is obtained by a probe	present or
inserted into the anal canal to a depth of approximately 6 cm and gently withdrawn	absent.
down the anal canal. The anal canal is divided into three levels of assessment in	
the axial plane referring to the following anatomical structures ^(11,172,173) :	
<i>i</i> . Proximal or lower level: corresponds to the subcutaneous part of the external	
anal sphincter where the internal anal sphincter is absent;	
<i>ii.</i> Middle level: corresponds to the superficial part of the EAS (concentric band	
of mixed echogenicity), the conjoined longitudinal layer, the IAS (concentric	
hypoechoic ring), and the transverse superficial perinei muscles;	
<i>iii</i> . Distal or upper level: the hyperechoic sling of the puborectal muscle and the	
complete ring of the internal anal sphincter are visualised ⁽¹¹⁾ .	
The probe should be rotated so that the anterior aspect of the anal canal is superior	
(12 o'clock) and left lateral is oriented right (3 o'clock) on the screen. The	
acquisition of a three-dimensional data volume (3D ultrasound) of the anal	
sphincter is also possible.	

628 Abbreviations: EAS, external anal sphincter; IAS, internal anal sphincter.

629

3.5.1.6 Ultrasound elastography: a non-invasive imaging technique that allows
quantification of mechanical and elastic tissue properties following application of physical
stress⁽¹⁷⁴⁾. (NEW). Elastography imaging uses either compression/strain elastography or
shear-wave elastography^(155,175-179). The primary differences between elastography techniques
relate to the type or source of applied stress, and the methods of detecting displacement of the
examined structures. Comparison between the elastography types and B-mode ultrasound is
shown in Figure 11.

637

638

Figure 11: Ultrasound elastography physics, measurement methods (reproduced with permission from Sigrist 2017 et al⁽¹⁷⁴⁾). In strain imaging (a), tissue displacement is measured by correlation of RF echo signals between search windows (boxes) in the states before and after compression. In shear wave imaging (b), particle motion is perpendicular to the direction of wave propagation, with shear wave speed c_s related to shear modulus *G*. In B-mode ultrasound (c), particle motion is parallel to the direction of wave propagation, with longitudinal wave speed c_L related to bulk modulus *K*.

646 Parameters and findings evaluated with ultrasound elastography imaging are described in Table 18.

Parameters, specifications (units of measure) and	Outputs and interpretation of
measurement processes	findings
3.5.1.6.1 Shear wave elastography (SWE): Ultrasound	Higher values indicate stiffer tissue, as
elastography using shear waves generated by the US beam.	shear waves propagate faster in stiffer
(NEW). Different types are point SWE, 2D SWE, and	tissues. Stiffness measures include
transient elastography. 2D SWE uses an acoustic radiation	both active (muscle contraction) and
force pulse sequence to generate shear waves, which	passive (viscoelastic properties)
propagate perpendicular to the ultrasound beam, causing	components of the tissue.
transient displacements. The distribution of shear wave	
velocities at each pixel is directly related to the shear	
modulus in kilopascal (kPa), an absolute measure of the	
tissue's elastic properties. This technique is considered	
more objective than strain elastography ⁽¹⁸⁰⁾ .	
3.5.1.6.1.1 Perineal shear wave elastography: Shear	Higher values indicate stiffer tissue.
wave elastography applied per perineum. (NEW). Only	Measures may provide evidence of
2D SWE has been applied to the PFM ^(155,175,179) . A linear	stiffer tissue at rest (e.g. high activation
transducer is placed against the perineum/vulva.	of PFM at rest) and should increase
Orientation is longitudinal (for assessing urethral	with contraction ^(155,175,179) . Quality of
sphincter), or aligned with the muscle fibers for specific	measurement depends on orientation
PFM (e.g. puborectalis) assessment. A linear or curved	of the transducer (parallel with muscle
transducer can be used. Stiffness is evaluated using	fibres), accuracy of movement of the
quantitative shear modulus maps represented in a color-	transducer to follow the movement of
coded elastogram displaying shear-wave velocities in	the muscle during contraction.

meters per second or tissue elasticity (shear elastic	Measures are compromised if there are
modulus) in kilopascals ⁽¹⁸¹⁾ .	areas in the image where the measure
	is saturated (stiffness greater than the
	measurable scale) or unable to be
	quantified by the system.
3.5.1.6.2 Strain elastography: Ultrasound elastography	• Qualitative analysis: The
which measures strain in one tissue area proportional to	different colors express different
another. (NEW). Maps, or elastograms, are developed	degrees of elasticity, usually
based on the relative differences in stiffness between the	varying from red (soft tissue) to
area of interest and the reference tissue. The assessor	blue (hard tissue) with
applies slight and constant vertical compression through	intermediate colours representing
the transducer along the major axis of the tissue. Elasticity	intermediate degrees of
is measured by means of the Young's modulus and is	stiffness ⁽¹⁸²⁾ .
defined as the ratio between the pressure measured and the	• Semi-quantitative analysis: the
strain (deformation compared to the initial length)	target tissue is selected and labeled
produced ⁽¹⁸²⁾ . Soft tissue is more compressible than harder	as the region of interest (ROI) A,
tissue and therefore has a higher strain (displacement) for	and the reference tissue is labeled
the same applied stress (force). The results of strain	as ROI B. Elasticity of tissue
elastography can only be expressed qualitatively or semi-	expressed as a strain ratio: B/A.
quantitatively ^(180,182) .	The higher the value of B/A, the
	stiffer the target tissue.
3.5.1.6.2.1 Pelvic floor strain elastography: strain	The higher the value of B/A, the stiffer
elastography to assess deep PFM elasticity ^(176,177) and	the target tissue. A 4-point elasticity
periurethral elasticity as an estimate of urethral	score has been used to represent
mobility ⁽¹⁸³⁾ . (NEW)	levator ani muscle elasticity ^(176,177) .

•	To assess deep PFM: A perineal transducer is placed				
	perpendicular to the skin in the sagittal plane to identify				
	levator ani muscle. The levator ani muscle is selected				
	on screen and labeled as the target tissue (region of				
	interest [ROI] A), and the adjacent anal canal is				
	selected and labeled as reference tissue (ROI B) ⁽¹⁷⁶⁾ .				
•	To assess urethral support tissues: an endovaginal				
	transducer is placed parallel to the urethral meatus. The				
	target tissue is the tissue between the urethra and the				
	vagina (para-urethral tissue) (ROI A), and the				
	reference tissue is set at the level of the posterior tissue				
	of the bladder neck (ROI B).				

Abbreviations: PFM, pelvic floor muscles; SWE, shear wave elastography; ROI, region of interest.

651 3.5.2 Magnetic resonance imaging (MRI): is a non-invasive diagnostic technique that produces 652 computerised images of internal body tissues and is based on nuclear magnetic resonance of atoms within the body induced by the application of radio waves⁽¹⁸⁴⁾. (**NEW**) This technique can 653 654 be applied for many purposes in urology/gynecology/gastroenterology including the assessment of PFM injury, morphometry and positioning of the PFMs and related organs as well as anorectal 655 656 functioning. Considering that MRI is rarely used in clinic to assess PFM morphometry and 657 function, only a brief overview is provided in Table 19 below and further details are available in other standardization documents^(11,144). 658

659

Table 19. Parameters and findings evaluated with pelvic floor MRI

Parameters, specifications (units of measure) and	Outputs and interpretation of findings		
measurement processes			
3.5.2.1 Levator ani defects: is damage to muscle	Levator ani damage on MRI can be		
fibers ranging from disruption of a single fascicle, to	diagnosed when one or more of the following		
complete disruption of the muscle origin	is present: absence of pubococcygeal muscle		
(CHANGED) ⁽²⁷⁾ . FN3.22	fibers in at least one 4-mm section, or two or		
There is no universally accepted system for the	more adjacent 2-mm sections in both the		
diagnosis and evaluation of the extent of the injury.	axial and the coronal planes ⁽²⁷⁾ .		
Essentially, abnormalities are judged to have	Defect severity may be further scored in each		
occurred when the morphology of the	muscle from 0 (no defect) to 3 (complete		
pubococcygeal portion of the levator ani muscle	loss). A summed score for the two sides (0–		
deviates from what is seen in normal nulliparous	6) is assigned and grouped as minor (0–3) or		
women ⁽²⁷⁾ .	major $(4-6)^{(11)}$.		
3.5.2.2 Levator ani position in the pelvis: location	May be normal, elevated or descended ⁽²⁷⁾ .		
of the levator ani in the sagittal plane in relation to			
defined landmarks and reference points/lines ⁽¹⁴⁴⁾ .			
(NEW)			
3.5.2.3 Hiatal dimension: see 3.5.1.3.11	See 3.5.1.3.11		
3.5.2.4 MR defecography: demonstrates the	This assessment focusses on anorectal		
anatomy of the anorectum as well as disorders of	function. When dyssynergia is diagnosed		
rectal evaluation. Barium paste is inserted prior to	(see definition 4.3.1) this confirms PFM		
defecation over a translucent commode	involvement ⁽¹¹⁾		
(CHANGED) ⁽⁴²⁾ .			

661 Abbreviations: MRI, magnetic resonance imaging; PFM, pelvic floor muscles.

3.6 Algometry: a test to assess the pain response to application of blunt pressure. It is used to
evaluate the pain threshold and pain tolerance. (NEW). Responses may reflect increased sensitivity
(allodynia, hyperalgesia, hyperpathia) or loss of sensation. Algometry does not provide objective
information regarding pathology or neurophysiological function, as do other more sophisticated
quantitative sensory testing methods.

- 668
- 669 Parameters and findings evaluated with algometry are described in Table 20.
- 670
- Table 20. Parameters and findings evaluated with algometry

Parameters, specifications (units of measure) and measurement	Outputs and
processes	interpretation of findings
3.6.1 Algometer/Algesiometer: an instrument for measuring the	Results may be expressed as
pain response to a pressure stimulus. (NEW)	the pressure applied when
An algometry device measures pressure applied in Newtons or	the patient reports detection
kg/cm ² , with an associated patient-reported pain response.	or tolerance of pain, or a
• To assess vulval or vestibular pressure pain response, the assessor	specific pressure applied
uses an algometer ⁽¹⁸⁶⁾ or a syringe with a pre-loaded or pre-set	and the patient rating of pain
amount of pressure, called a vulvalgesiometer ⁽¹⁸⁷⁾ or a cotton	at that pressure. A finding of
swab ⁽¹⁸⁸⁾ against the vulval tissue and delivers the pressure.	pain with a low applied
To assess intra-vaginal pressure pain response, the assessor mounts a	pressure may suggest
digital palpometer (sensor) to the palpating digit, covered by	allodynia, and a finding of
examination glove, and connected to an algometry device. The device	pain with a moderate
applies a pre-set amount of pressure to the tissue ⁽¹⁸⁸⁻¹⁹⁰⁾ . To assess	applied pressure may
pressure/pain in pelvic floor tissues, the assessor applies a pre-set	suggest hyperalgesia.
amount of pressure (usually in the range of $0.5N - 2N^{(188,191,192)}$),	

sta	arting at a low pressure and assesses pain response to that pressure,	Variability in readings can
or	applying increasing amounts of pressure and instructing the patient	be caused by: anatomical
to	state when the pressure reaches the patient's threshold.	test site (muscle belly vs.
Al	gometry tests:	tendon ⁽¹⁹⁴⁾ ; mucosa vs.
•	3.6.1.1 Pressure pain threshold (PPT): the minimum intensity	tendon ⁽¹⁹¹⁾ , co-existence of
	of a pressure stimulus that is perceived as painful ⁽¹⁹³⁾ . (i.e. point	other pain disorders ⁽¹⁹⁵⁾ ; left
	at which a sensation changes from one of pressure to one of pain)	vs. right ⁽¹⁹⁶⁾ , stage in
	(NEW).	menstrual cycle ⁽¹⁹⁷⁾ , sex and
•	3.6.1.2 Pressure pain tolerance (PPTol) : the highest intensity of	gender ⁽¹⁹⁸⁾ , rate of pressure
	painful pressure stimulus that an individual is able to tolerate ⁽¹⁹³⁾ .	increase during test,
	(NEW).	dimensions of the pressure
		applicator.
1		

 $_{\rm FN3.6}$ This is not an exhaustive list of anorectal manometry parameters.

FN3.1 See section 2.2.9 for definition.

 $_{FN3.2}$ Using the dynamometer alone, the stiffness value will reflect the summative contribution of the active and passive components of tone. If dynamometry is combined with EMG, the passive contribution can be identified⁽⁸⁶⁾.

FN3.3 This term refers to simple manometry that measures pressure in the anal sphincter. This is differentiated from sophisticated anorectal manometry – see Section 3.3.2.

 $_{FN3.4}$ It is not recommended to use intravaginal pressure manometry to assess the reflex contraction of the PFM during coughing⁽⁹⁹⁾. Bo and Constantinou⁽⁹⁹⁾ explained that pressure measurement is a summation of signals including PFM and intra-abdominal pressure caused by the cough itself and therefore, it is unlikely that the PFM reflex can be assessed in isolation using pressure manometry. In contrast, ano-rectal manometry can be used to assess a reflex during an involuntary PFM contraction⁽¹⁰⁰⁾ if the transducer is located in the anus, caudal to the puborectalis/ano-rectal junction; therefore it is not impacted directly by intra-abdominal pressure. FN3.5 This investigation is termed 'anal manometry' in Sultan et al⁽¹¹⁾

 $_{\rm FN3.7}$ This contrast with vaginal manometry where the source of pressure during an involuntary contraction cannot be assumed to be the levator ani contraction.

FN3.8 Clinical EMG devices mainly offer pre-set filter settings.

FN3.9 Reducing the size of electrode and the inter-electrode distance may increase the system selectivity and reduce cross talk⁽¹¹⁸⁾.

 $_{FN3.10}$ The recording of resting activity is highly susceptible to contamination by ambient noise. A low proportion of noise in the signal (or higher signal-to-noise ratio) is necessary for accurate assessment. $_{FN3.11}$ Unlike many other skeletal muscles^(123,124), the PFMs are thought to have a level of constant EMG activity in order to maintain continence and support of pelvic/abdominal contents.

FN3.12 Advanced EMG techniques are needed to prevent inaccurate interpretation from artefacts and muscle crosstalk.

 $_{FN3.13}$ Slow recruitment could be a sign of PFM dysfunction if it leads to leakage during coughing and sneezing when a quick muscle contraction is needed to counteract increased intra-abdominal pressure^(27,75). $_{FN3.14}$ The definition for this term used in Bo et al⁽²⁷⁾ is the definition this document calls 'slow reaction time'. $_{FN3.15}$ This may also be considered in the motor control domain.

FN3.16 Factors that may compromise the measurement of bladder base displacement include: the lack of bony landmark as a fixed starting point and the fact that movement of the bladder base does not always reflect movement of the bladder neck⁽¹³⁵⁾.

FN3.17 This finding must be correlated with findings of other tests and signs (especially digital vaginal / rectal palpation) to determine reason for asymmetry.

 $_{FN3.18}$ Factors that may affect the measurement of bladder base displacement include: the lack of boney landmark as a fixed starting point and the fact that movement of the bladder base does not always reflect movement of the bladder neck⁽¹³⁵⁾.

 $_{3.19}$ An endocavity probe consists of an elongated probe used to perform endovaginal or endorectal examination. FN3.20 The horizontal reference line drawn from antero-posterior margin or the lowest margin of the PS may be influenced by the angle of the transducer.

FN3.21 Synonyms are puborectalis/pubovisceralis defects or injury.

FN3.22 The term levator injury is also used synonymously^(11,185).

674 SECTION 4: DIAGNOSES

Diagnosis: the act or process of identifying or determining the nature and cause of a disease or injury 675 676 through evaluation of patient history, examination, review of investigations, and the opinion derived from such an evaluation⁽¹⁹⁹⁾. (CHANGED) The diagnostic process aims to identify the most specific 677 678 disorder possible. Overarching diagnoses are used when there is less certainty about the presenting 679 disorder. Diagnoses that are specific to the PFMs may co-exist with and be used in addition to other 680 pelvic floor diagnoses the patient presents with, e.g. voiding dysfunction, pelvic organ prolapse. The 681 diagnoses proposed below may change as evidence emerges to support or refute these terms as 682 diagnostic terms. In some healthcare settings, clinicians are required to assign a code for the presenting 683 diseases, disorders, injuries and other related health conditions, using the International Classification of Diseases (ICD) coding system⁽²⁰⁰⁾. Not all terms below have a corresponding ICD diagnostic code. 684 685 As advised by ICD, "codes that describe symptoms and signs, as opposed to diagnoses, are acceptable 686 for reporting purposes when a related definitive diagnosis has not been established (confirmed) by the 687 provider".

688

4.0. Pelvic floor muscle disorder/dysfunction: an alteration of normal PFM function. (**NEW**) Any departure from normal function of the PFM that is of bother to the patient and has an associated sign and/or a finding from an investigation that suggests a departure from normal structure or function. If a specific disorder can be diagnosed, the following terms may be used.

693

694 **4.1 Disorder of increased PFM tone**

4.1.1 Pelvic floor tension myalgia: a condition of pain and increased PFM tone (NEW). FN4.1 If
the location can be confirmed as the levator ani, then the term can be levator ani tension myalgia.
Criteria for diagnosis of pelvic floor tension myalgia are described in Table 21.

699	Table 21: Criteri	a for diagnosis	of pelvic floor	tension myalgia
0//	14010 211 011001			venoron mj albia

Assessment	Findings					
Symptoms	• may relate to sensation of pain: pain, tender, ache, discomfort					
	• may relate to sensation of increased tone: tight, tense, narrow or constricted					
Signs	tenderness or tender point on palpation of PFMs FN4.2 per perineum, per vaginam or					
	per rectum					
	as well one or more of the following signs:					
	• lack of perineal and/or PFM descent with sustained increased intra-abdominal					
	pressure					
	• absent, partial or delayed relaxation of perineum and/or PFM after contraction					
	• non-relaxing PFM					
	• hypertonicity, or increased PFM tone, on a continuum from transient increase					
	in tone to spasm					
	• fasciculation					
	• reduced flexibility of the vaginal opening					
Investigations	muscle tenderness as assessed by digital algometry (palpometry)					
	finding of increased tone from any tool which measures tone (dynamometry,					
	myotonometry, manometry, EMG, ultrasound or MRI).					
	• if EMG reveals an inconsistent or elevated resting baseline, or slow de-					
	recruitment, this suggests increased myoelectrical activity, which may be					
	termed overactivity in the PFM _{FN4.3} .					

 700
 Abbreviations: PFM, pelvic floor muscles; MRI, magnetic resonance; EMG, electromyography

4.1.2 Pelvic floor myofascial pain syndrome: a pelvic floor pain syndrome of myofascial
 origin. (NEW) this diagnosis has trigger points as a hallmark feature⁽⁵⁰⁾. However there is no
 consensus of the definition and diagnostic criteria associated with trigger points^(50,51). The criteria
 most consistently used for diagnosis amongst researchers and expert clinicians are shown in
 Table 22.

708	Table 22:	Criteria fo	r diagnosis	of pelvic	floor myofa	scial pain s	vndrome
,00	1 uoio 22.	Critoria 10	i alagnobib		moor myoru	ocial pain b	, non onno
			0	1	2	1	~

Assessment	Findings
Symptoms	presence of pain
Signs	tender point in a taut band (localized increased tone) of skeletal muscle ^(50,51)
	patient pain recognition on tender point palpation
	referral pattern
	local twitch response
	the paired criteria of tender points in taut bands and predicted or recognised pain
	referral form the most frequently cited combination of diagnostic criteria
Investigations	there is no consensus regarding objective laboratory tests for myofascial trigger
	point diagnosis however MR elastography and ultrasound elastography have been
	reported to investigate myofascial taut bands ⁽²⁰²⁾ and trigger points ⁽²⁰³⁾ in the
	trapezius muscle.

709 Abbreviations: MR, magnetic resonance

- **4.2 Disorder of PFM pain**

4.2.1 Pelvic floor myalgia: a condition of PFM pain. (NEW). Criteria for diagnosis of pelvic
floor myalgia are described in Table 23.

715 Table 23: Criteria for diagnosis of pelvic floor myalgia

Assessment	Findings
Symptoms	pain, tender, ache, discomfort
Signs	muscle tenderness or tender point on palpation of PFMs FN4.4 and normal tone in
	PFM per perineum, per vaginam or per rectum.
Investigations	muscle tenderness as assessed by digital algometry (palpometry)
	finding of normal tone (measured by dynamometry, myotonometry, manometry,
	EMG, ultrasound or MRI)

Abbreviations: PFM, pelvic floor muscles, EMG, electromyography; MRI, magnetic resonance
imaging.

718

4.3 Disorder of decreased PFM tone: a condition which results from a reduction in PFM tone,
due to either the contractile or the non-contractile components of tone _{FN4.5}. (NEW). Criteria for
diagnosis of decreased PFM tone are described in Table 24.

722

723 Table 242: Criteria for diagnosis of decreased PFM tone

Assessment	Findings
Symptoms	loose, lax, gaping, sagging, open, weak, bulging, full, loss of control
Signs	hypotonicity, decreased PFM tone, anal or introital gaping, excessive flexibility of
	the vaginal opening, palpation of an anal sphincter gap or levator avulsion.
	deficit in PFM contractile function: absence of voluntary PFM contraction,
	decreased strength (weakness), decreased sustained and repeated endurance, lack of
	perineal or PFM elevation, no urethral lift, partial or uncertain levator closure, small
	to no change in levator hiatus on contraction.

 Investigations
 any tool which measures tone (measured by dynamometry, myotonometry, manometry, EMG, ultrasound or MRI)

 - if EMG reveals a reduced signal amplitude or peak microvolts, or shorter duration of sustained contraction this suggests decreased myoelectrical activity, which may be termed 'underactivity' in the PFM. FN4.6

Abbreviations: PFM, pelvic floor muscles; EMG, electromyography; MRI, magnetic resonance
imaging.

- **4.4 Disorder of PFM coordination**

4.4.1 PFM dyssynergia $_{FN4.7}$ paradoxical PFM or sphincter contraction: a dysfunction of729coordination between the PFM and a functional activity, such as a PFM contraction when730relaxation is functionally required. (NEW). These dyssynergias may share similar symptoms731and signs $_{FN4.8}$, $_{FN4.9}$

4.4.1.1 Anismus: spasm of the EAS with attempted defecation or anal penetration (CHANGED)⁽¹¹⁾. FN4.10 This dyssynergia is shown in Figure 12.

Figure 12: A normal and abnormal (dyssynergic) pattern of defecation, from Rao 2007⁽²⁰⁴⁾. A normal pattern consists of a rise in the intrarectal pressure coordinated with relaxation of anal

738	sphincter pressure. In contrast, a dyssynergic pattern is associated with a paradoxical increase
739	in anal sphincter pressure. Typical patterns for a normal and dyssynergic pattern of defecation
740	as measured during anorectal manometry with a pressure sensor in the rectum and a pressure
741	sensor in the anal canal.

- 742 Criteria for diagnosis of anismus are described in Table 25.
- 743
- 744 Table 25: Criteria for diagnosis of anismus

Assessment	Findings
Symptoms	pain, tender, ache, discomfort during attempted defecation or anal penetration
Signs	perineal and / or PFM elevation with sustained increased IAP (bearing down) or
	attempted penetration
	Increased PFM tone
Investigations	balloon expulsion test
	MR defecography
	EMG: PFM activation during defecation suggesting poor motor control ⁽²⁰⁵⁾

- Abbreviations: PFM, pelvic floor muscles; IAP, intra-abdominal pressure; MR, magnetic resonance;
 EMG, electromyography.
- 747

748 4.4.1.2 Vaginismus : spasm of vaginal musculature that inte	terferes with vaginal penetration
--	-----------------------------------

749 (CHANGED)⁽¹²⁾. FN4.11 Criteria for diagnosis of vaginismus are described in Table 26.

- 750 Vaginismus may also be termed genito-pelvic pain/penetration disorder, which includes fear
- 751 or anxiety as a component of the disorder^(206,207).
- 752
- 753 Table 26: Criteria for diagnosis of vaginismus

Assessment	Findings
Symptoms	pain, tight, tense, narrow or constricted
Signs	transient increased tone - inability to maintain relaxation with attempted vaginal
	penetration
	increased PFM tone
Investigations	assessment of resting tone (measured by dynamometry, myotonometry,
FN4.12	manometry, EMG, ultrasound or MRI)
	increased activation of PFM shown by perineal or peri-anal EMG during
	attempted vaginal penetration.

754 Abbreviations: PFM, pelvic floor muscles; EMG, electromyography; MRI, magnetic resonance
755 imaging.

- 756
- 4.5 Pudendal neuralgia: Pudendal neuralgia is a chronic and severely disabling neuropathic pain
 syndrome caused by mechanical or non-mechanical injury of the pudendal nerve⁽²⁰⁸⁾. (NEW) The
 Nantes criteria list 5 essential diagnostic criterion including 3 symptoms, one sign and one
 investigation⁽²⁰⁹⁾. These criteria are described in Table 27.
- 761
- 762 Table 27: Criteria for diagnosis of pudendal neuralgia

Assessment	Findings
Symptoms	pain in the distribution of the pudendal nerve and it's referral areas, primarily the
	genitalia including the vulvovaginal, anorectal and distal urethral areas.
	worse in the sitting position
	pain does not wake the patient at night, no numbness of the perineum
	the patient may also have associated pelvic floor symptoms ⁽²⁰⁸⁾

Signs	Nantes criteria ⁽²⁰⁹⁾ sign: no loss of sensation in the pudendal distribution on
	objective testing
	Other signs include
	• tenderness to palpation anywhere along the length of the pudendal nerve
	• increased tone and tenderness of the obturator internus or piriformis muscles
	(depending on the location of the nerve irritation)
	• positive pudendal nerve neurodynamic test
	• positive pudendal nerve provocation test
Investigations	As per Nantes criteria ⁽²⁰⁹⁾ : may be confirmed by relief of patient's pain after a
	pudendal nerve block with or without guided imaging. FN4.13

 $_{FN4.4}$ When assessing sensory changes *PV* or *PR*, the clinician needs to determine whether s/he is detecting sensory change in the mucosa (mucosal sensitivity), or the underlying muscle (muscle tenderness) by differentiating the depth and firmness of palpation.

 $_{FN4.5}$ It may be impossible to distinguish between the 2 subsets of this condition without access to an investigation which is able to separate the measurement of the contractile from the non-contractile components of tone. Even so, the certainty of the contribution from the contractile component of tone recorded by sEMG needs to consider the limitations of sEMG findings (noise, cross-talk etc).

FN4.6 The previously proposed term 'underactive PFM'⁽²⁶⁾ has been used to refer to decreased tone in a muscle, however if the source of the decreased tone (contractile or noncontractile component of tone) cannot be determined, this term is not recommended.

FN4.7 Dyssynergia may be similar to the condition termed "overactive pelvic floor muscles" as described by Messelink et al⁽²⁶⁾: "A situation in which the pelvic floor muscles do not relax, or may even contract when relaxation is functionally needed for example during micturition or defecation. This condition is based on symptoms such as voiding problems, obstructed defecation, or dyspareunia and on signs like the absence of voluntary pelvic floor muscle relaxation."

FN4.8 PFM-related symptoms reported by patients may be secondary to more bothersome functional symptoms such as inability to void, defaecate or allow vaginal entry.

 $_{FN4.1}$ This term was first used by Sinaki et al 1977⁽²⁰¹⁾, however in their case series, they did not assess PFM tone or tension. Nevertheless, they proposed the cause of the pain was "habit contraction or chronic spasm of the PFM". We propose that this term should be used only when both pain and increased tone are present. $_{FN4.2}$ When assessing sensory changes *PV* or *PR*, the clinician needs to determine whether s/he is detecting sensory change in the mucosa (mucosal sensitivity), or the underlying muscle (muscle tenderness) by differentiating the depth and firmness of palpation.

FN4.3 The previously proposed term 'overactive PFM'⁽²⁶⁾ has been used to refer to increased tone in a muscle, however if the source of the increased tone (contractile or noncontractile component of tone) cannot be determined, this term is not recommended.

FN4.9 Difficulty voiding may be due to paradoxical contraction of the urethral sphincter, as occurs in conditions such as detrusor sphincter dyssynergia or voiding dysfunction, however there is no apparent PFM-related symptom that the patient reports.

FN4.10 Anismus is the PFM component of dyssynergic defecation. Diagnosis of dyssynergic defecation includes functional constipation criteria, prolonged transit, and ineffective motility to expel feces⁽²⁰⁴⁾.

FN4.11 As stated in Rogers et al⁽¹²⁾, there is often (phobic) avoidance and anticipation/fear/experience of pain, along with variable involuntary PFM contraction. Patients with vaginismus could present with severe fear avoidance without vulvar pain or fear avoidance with vulvar pain. Structural or other physical abnormalities must be ruled out/addressed. There is controversy of whether or not this term should be retained, with the Diagnostic and Statistical Manual of Mental Disorders 2013 proposal to replace dyspareunia and vaginismus with the term "Genito-Pelvic Pain/Penetration Disorder (GPP/PD)"⁽²⁰⁶⁾, and the lack of consensus on this term⁽²⁰⁷⁾.

FN4.12 Investigations may be in-conclusive, as PFM tone values may overlap in conditions such as dyspareunia and vaginismus, therefore the PFM resting tone and response to attempted penetration may not exclusively diagnose vaginismus.

 $_{FN4.13}$ Pudendal nerve blocks are technically difficult to perform accurately and lack of pain relief after the procedure does not rule out the condition⁽²⁰⁸⁾.

764 CONCLUSION

765 This report has drawn together the most frequently published methods of PFM assessment that appear 766 in the published literature. This process has highlighted the plethora of terms in current use. We have 767 attempted to provide the most precise yet clinically-meaningful definitions and descriptions of these 768 terms, and where available, provided an explanation of the finding from the assessment method. We 769 hope this will provide clinicians and researchers with clarity and standardisation in the recording of 770 PFM function and dysfunction. It is anticipated that some of these terms will be discarded over time 771 and new terms will emerge, and a revision of this document will be required in the future. It is important 772 to remember that visual observation and digital palpation are subjective forms of assessment, and the 773 assessor must be aware that conclusions of PFM function or dysfunction based on these clinical 774 observations may be uncertain. At present, PFM tone and involuntary action remain less well understood than properties such as strength. Where available, the use of quantitative assessment tools 775 776 (investigations), may strengthen the certainty of the finding. In some instances, it may not be possible 777 to identify a specific classification of PFM disorder, beyond the first level of diagnosis of 'PFM 778 disorder'.

779

780 AREAS FOR FURTHER RESEARCH

A core outcome set for PFM assessment would be valuable, however this requires knowledge of the clinimetric properties of the many assessment methods currently used in clinical practice and research, and a comparison of these properties amongst the assessment methods; such knowledge is lacking. There is an urgent need for a report to compile the validity, reliability and responsiveness of PFM assessment methods, especially for the more subjective methods of visual observation and digital palpation. The clinimetric properties of some aspects of the more objective methods of PFM assessment (simple and sophisticated tools) has been undertaken, however many gaps in testing

- remain. Whether any of these assessment methods provide diagnostic test accuracy of PFM function
- and dysfunction is unknown. Future research in this area is required.

792	A	CKNOWLEDGEMENTS / ADDENDUM/ METHODOLOGY:
793	-	Paul McCrory, Neurologist, PhD, Melbourne, Australia
794	-	Paul Hodges, Physiotherapist, PhD, Brisbane, Australia
795	-	Ryan Stafford, PhD, Brisbane, Australia
796	-	Dawson Kidgell, Neuromuscular Physiologist, PhD, Melbourne, Australia
797	-	Ashlyn Frazer, Human Physiologist, PhD, Melbourne, Australia
798	-	Hans Peter Dietz, Urogynaecologist, PhD, Sydney, Australia
799	-	Irmina Nahon, Physiotherapist, PhD, Canberra, Australia
800	-	Patricia Neumann, Physiotherapist, PhD, Adelaide, Australia
801	-	Shaza Kadah, Physiotherapist, PhD student, Melbourne, Australia
802		

803

804 This document has involved 20 rounds of reviews of individual sections and 11 rounds of full 805 manuscript review by working group members, with co-chair checking, collation and feedback of all 806 comments. Additional multiple rounds of development and refinement were undertaken by the cochairs in-between section and full working group reviews. The process was subject to live Meetings 807 808 in Florence (September 2017), Philadelphia (2018) and Gothenburg (2019). Comprehensive and 809 constructive review was undertaken by expert external reviewers, and we thank them for their 810 considered input: Bert Messelink, David Vodusek, Chantale Dumoulin, Margaret Sherburn, Paul 811 Hodges and MJ Strauhal. A further round of revisions was undertaken in response to the external 812 review. Following ICS website publication, there was a further round of review to address membership 813 comments. Version 12 will be submitted for website and NAU journal publication.

814 **References:**

- Eizenberg N, Anatomedia, McGraw-Hill E. An@tomedia: a new approach to medical education, developments in anatomy. In. *Anatomedia online*: Richmond, Vic: Anatomedia Pty Ltd. North Ryde, NSW: McGraw-Hill Education.; 2010.
- Primal Pictures L. Primal Pictures' 3D real-time. In. *Primal Pictures' 3D real time*: London,
 Eng.: Primal Pictures.; 2018.

Frawley HC, Neumann P, Delany C. An argument for competency-based training in pelvic
floor physiotherapy practice. *Physiother Theory Pract.* 2019;35(12):1117-1130.

- AIUM/IUGA. AIUM/IUGA practice parameter for the performance of Urogynecological
 ultrasound examinations : Developed in collaboration with the ACR, the AUGS, the AUA, and
 the SRU. *Int Urogynecol J.* 2019;30(9):1389-1400.
- Saltiel F, Miranda-Gazzola APG, Vitoria RO, Figueiredo EM. Terminology of Pelvic Floor
 Muscle Function in Women With and Without Urinary Incontinence: A Systematic Review. *Phys Ther.* 2018;98(10):876-890.
- 828 6. WHO. International classification of functioning, disability, and health : ICF. In: World Health
 829 Organization, Geneva; 2001: <u>https://www.who.int/classifications/icf/en/</u>.
- Saltiel F, Miranda-Gazzola APG, Vitoria RO, Sampaio RF, Figueiredo EM. Linking Pelvic
 Floor Muscle Function Terminology to the International Classification of Functioning,
 Disability and Health. *Phys Ther*. 2020; published 2020 Mar23.
- 8. FDA. Food and Drug Administration Guidance for Industry on Patient-Reported Outcome
 Measures: Use in Medical Product Development to Support Labeling Claims. In. Vol 74:
 Federal Register; 2009:65132-65133.
- Johnston B, Patrick D, Devji T, et al. Chapter 18: Patient-reported outcomes. In: Higgins J,
 Thomas J, Chandler J, et al., eds. *Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019)*: Cochrane; 2019.
- 10. Melzack R. The short-form McGill Pain Questionnaire. *Pain.* 1987;30(2):191-197.
- 840 11. Sultan AH, Monga A, Lee J, et al. An International Urogynecological Association
 841 (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for Female
 842 Anorectal Dysfunction. *Neurourol Urodyn.* 2017;36(1):10-34.
- Rogers RG, Pauls RN, Thakar R, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the assessment of sexual health of women with pelvic floor dysfunction. *Neurourol Urodyn*. 2018;37(4):1220-1240.
- Neels H, Mortiers X, de Graaf S, Tjalma WAA, De Wachter S, Vermandel A. Vaginal wind:
 A literature review. *Eur J Obstet Gynecol Reprod Biol.* 2017;214:97-103.
- 849 14. Bottomley JM. *Quick reference dictionary for physical therapy*. 3rd edition ed. Thorofare:
 850 Slack; 2013.
- 15. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting
 Template (CERT): Explanation and Elaboration Statement. *Br J Sports Med.*2016;50(23):1428-1437.
- Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Face validity and reliability of the first digital assessment scheme of pelvic floor muscle function conform the new standardized terminology of the International Continence Society. *Neurourol Urodyn*. 2009;28(4):295-300.
- Shelly B, Dunbar A. Palpation and assessment of the pelvic floor muscles using depth and positional measurements. *Journal of the Section on Women's Health.* 2004;28(1):19-23.
- 18. Haylen BT, Maher CF, Barber MD, et al. An International Urogynecological Association (IUGA) / International Continence Society (ICS) Joint Report on the Terminology for Female Pelvic Organ Prolapse (POP). *Neurourol Urodyn.* 2016;35(2):137-168.

- Beller EJ, Robinson BL, Matthews CA, et al. Perineal body length as a risk factor for ultrasound-diagnosed anal sphincter tear at first delivery. *Int Urogynecol J.* 2014;25(5):631-636.
- Lane TL, Chung CP, Yandell PM, Kuehl TJ, Larsen WI. Perineal body length and perineal lacerations during delivery in primigravid patients. *Proc (Bayl Univ Med Cent)*.
 2017;30(2):151-153.
- 21. Oettle GJ, Roe AM, Bartolo DC, Mortensen NJ. What is the best way of measuring perineal descent? A comparison of radiographic and clinical methods. *Br J Surg.* 1985;72(12):999-1001.
- 872 22. Savoye-Collet C, Savoye G, Koning E, Leroi AM, Dacher JN. Gender influence on defecographic abnormalities in patients with posterior pelvic floor disorders. *World J Gastroenterol.* 2010;16(4):462-466.
- Ambrose S, Keighley MR. Outpatient measurement of perineal descent. *Ann R Coll Surg Engl.*1985;67(5):306-308.
- 877 24. Henry MM. Anorectal physiology and pelvic floor disorders. *Curr Opin Gastroenterol.*878 1986;2(1):44-46.
- 879 25. Mazier WP. Keyhole deformity. Fact and fiction. *Dis Colon Rectum*. 1985;28(1):8-10.
- Messelink B, Benson T, Berghmans B, et al. Standardization of terminology of pelvic floor muscle function and dysfunction: report from the pelvic floor clinical assessment group of the International Continence Society. *Neurourol Urodyn.* 2005;24(4):374-380.
- Bø K, Frawley HC, Haylen BT, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction. *Neurourol Urodyn.* 2017;36(2):221-244.
- 887 28. Stafford RE, Coughlin G, Lutton NJ, Hodges PW. Validity of Estimation of Pelvic Floor
 888 Muscle Activity from Transperineal Ultrasound Imaging in Men. *PLoS One*.
 889 2015;10(12):e0144342.
- Neumann PB, O'Callaghan M. The Role of Preoperative Puborectal Muscle Function Assessed
 by Transperineal Ultrasound in Urinary Continence Outcomes at 3, 6, and 12 Months After
 Robotic-Assisted Radical Prostatectomy. *Int Neurourol J.* 2018;22(2):114-122.
- Stafford RE, van den Hoorn W, Coughlin G, Hodges PW. Postprostatectomy incontinence is related to pelvic floor displacements observed with trans-perineal ultrasound imaging. *Neurourol Urodyn.* 2018;37(2):658-665.
- Baessler K, Metz M, Junginger B. Valsalva versus straining: There is a distinct difference in resulting bladder neck and puborectalis muscle position. *Neurourol Urodyn.* 2017;36(7):1860-1866.
- Miller JM, Ashton-Miller JA, DeLancey JO. A pelvic muscle precontraction can reduce coughrelated urine loss in selected women with mild SUI. *J Am Geriatr Soc.* 1998;46(7):870-874.
- 33. Slieker-ten Hove M, Pool-Goudzwaard A, Eijkemans M, Steegers-Theunissen R, Burger C,
 Vierhout M. Pelvic floor muscle function in a general population of women with and without
 pelvic organ prolapse. *International Urogynecology Journal*. 2010;21(3):311-319.
- 34. IASP. IASP Terminology, in Part III: Pain Terms, A Current List with Definitions and Notes
 on Usage, Classification of Chronic Pain. In: 2nd edition 1994, 2nd update 2012 ed.
 https://www.iasp-
- 907pain.org/Education/Content.aspx?ItemNumber=1698&navItemNumber=5762011.Accessed90824Jan2020.
- Fearmonti R, Bond J, Erdmann D, Levinson H. A review of scar scales and scar measuring devices. *Eplasty.* 2010;10:e43-e43.
- Skorupska E, Bednarek A, Samborski W. Tender Points and Trigger Points Differences and
 Similarities. *J Musculoskelet Pain.* 2013;21(3):269-275.

- Farrar JT, Young JP, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. *Pain*.
 2001;94(2):149-158.
- 916 38. Butler D. *The Sensitive Nervous System, ch 5, Neurodynamics.* Adelaide: Noigroup
 917 Publications; 2000.
- 918 39. Strauhal MJ, Frahm J, Morrison P, et al. Vulvar Pain: A Comprehensive Review. *JWHPT*.
 919 2007;31(3):7-26.
- 40. Bergeron S, Binik YM, Khalife S, Pagidas K, Glazer HI. Vulvar vestibulitis syndrome:
 reliability of diagnosis and evaluation of current diagnostic criteria. *Obstet Gynecol.*2001;98(1):45-51.
- Previnaire JG. The importance of the bulbocavernosus reflex. *Spinal cord series and cases*.
 2018;4:2-2.
- 42. D'Ancona C, Haylen B, Oelke M, et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. *Neurourol Urodyn.* 2019;38(2):433-477.
- 43. Doggweiler R, Whitmore KE, Meijlink JM, et al. A standard for terminology in chronic pelvic pain syndromes: A report from the chronic pelvic pain working group of the international continence society. *Neurourol Urodyn*. 2017;36(4):984-1008.
- 44. Popeney C, Ansell V, Renney K. Pudendal entrapment as an etiology of chronic perineal pain:
 Diagnosis and treatment. *Neurourol Urodyn.* 2007;26(6):820-827.
- 45. Apte G, Nelson P, Brismee JM, Dedrick G, Justiz R, Sizer PS. Chronic Female Pelvic PainuPart
 1: Clinical Pathoanatomy and Examination of the Pelvic Region. *Pain Practice*. 2012;12(2):88110.
- 46. Neumann P, Sutherland P, Nahon I, Morrison S. Pelvic floor muscle training after prostate
 surgery. *Lancet.* 2012;379(9811):119; author reply 121.
- 47. Allen D, Widener G. Tone abnormalities. In: Cameron M, ed. *Physical Agents in Rehabilitation: from research to practice.* 3rd ed. St. Louis, MO, USA: Saunders Elsevier; 2009:78.
- 48. Simons DG, Mense S. Understanding and measurement of muscle tone as related to clinical muscle pain. *Pain.* 1998;75(1):1-17.
- 49. Masi AT, Hannon JC. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. *J Bodyw Mov Ther*. 2008;12(4):320-332.
- 50. Tough EA, White AR, Richards S, Campbell J. Variability of criteria used to diagnose
 myofascial trigger point pain syndrome--evidence from a review of the literature. *Clin J Pain*.
 2007;23(3):278-286.
- 51. Bourgaize S, Janjua I, Murnaghan K, Mior S, Srbely J, Newton G. Fibromyalgia and myofascial pain syndrome: Two sides of the same coin? A scoping review to determine the lexicon of the current diagnostic criteria. *Musculoskeletal Care*. 2019;17(1):3-12.
- 52. Kavvadias T, Pelikan S, Roth P, Baessler K, Schuessler B. Pelvic floor muscle tenderness in asymptomatic, nulliparous women: topographical distribution and reliability of a visual analogue scale. *Int Urogynecol J.* 2013;24(2):281-286.
- 53. Devreese A, Staes F, De Weerdt W, et al. Clinical evaluation of pelvic floor muscle function in continent and incontinent women. *Neurourol Urodyn*. 2004;23(3):190-197.
- 956 54. Dietz HP. The quantification of levator muscle resting tone by digital assessment. *Int* Urogynecol J. 2008;19(11):1489.
- 855. Reissing ED, Binik YM, Khalife S, Cohen D, Amsel R. Vaginal spasm, pain, and behavior: an
 859 empirical investigation of the diagnosis of vaginismus. *Arch Sex Behav.* 2004;33(1):5-17.
- 56. Lance JW, McLeod JG. A physiological approach to clinical neurology. 3rd ed. London; Boston:
 Butterworths; 1981.

- 962 57. NINDS. National Institute of Neurological Disorders and Stroke: Dystonia.
 963 <u>https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Dystonias-</u>
 964 <u>Fact-Sheet</u>. Accessed 27Sep2020.
- 965 58. Gentilcore-Saulnier E, McLean L, Goldfinger C, Pukall CF, Chamberlain S. Pelvic floor
 966 muscle assessment outcomes in women with and without provoked vestibulodynia and the
 967 impact of a physical therapy program. *J Sex Med.* 2010;7(2 Pt 2):1003-1022.
- 968 59. van Delft K, Shobeiri SA, Thakar R, Schwertner-Tiepelmann N, Sultan AH. Intra- and
 969 interobserver reliability of levator ani muscle biometry and avulsion using three-dimensional
 970 endovaginal ultrasonography. *Ultrasound Obstet Gynecol.* 2014;43(2):202-209.
- 80. Rao SSC. Rectal Exam: Yes, it can and should be done in a busy practice! *Am J Gastroenterol*.
 2018;113(5):635-638.
- Bo K, Finckenhagen HB. Vaginal palpation of pelvic floor muscle strength: inter-test reproducibility and comparison between palpation and vaginal squeeze pressure. *Acta Obstet Gynecol Scand.* 2001;80(10):883-887.
- 62. Deegan EG, Stothers L, Kavanagh A, Macnab AJ. Quantification of pelvic floor muscle
 strength in female urinary incontinence: A systematic review and comparison of contemporary
 methodologies. *Neurourol Urodyn.* 2018;37(1):33-45.
- Van Kampen M, De Weerdt W, Feys H, Honing S. Reliability and validity of a digital test for
 pelvic muscles strength in women. *Neurourol and Urodynam* 1996;15:338-336.
- 64. Laycock J, Jerwood D. Pelvic Floor Muscle Assessment: The PERFECT Scheme.
 982 *Physiotherapy*. 2001;87(12):631-642.
- Brink CA, Sampselle CM, Wells TJ, Diokno AC, Gillis GL. A digital test for pelvic muscle
 strength in older women with urinary incontinence. *Nurs Res.* 1989;38(4):196-199.
- 985 66. Draper N, Marshall H. In: *Exercise Physiology for Health and Sports Performance*. 1st edition
 986 ed.2012:206.
- 987 67. Plowman D, Smith D. *Exercise physiology for health, fitness, and performance*. Philadelphia:
 988 Wolters Kluwer Health /Lippincott Williams & Wilkins Health; 2014.
- 68. Schabrun SM, Stafford RE, Hodges PW. Anal sphincter fatigue: is the mechanism peripheral or central? *Neurourol Urodyn*. 2011;30(8):1550-1556.
- 69. Kent M. *The Oxford Dictionary of Sports Science & Medicine*. 3 ed: Oxford University Press
 992 Print Publication 2006.
- Milios JE, Ackland TR, Green DJ. Pelvic floor muscle training in radical prostatectomy: a randomized controlled trial of the impacts on pelvic floor muscle function and urinary incontinence. *BMC Urol.* 2019;19(1):116.
- 996 71. Boyles SH, Edwards SR, Gregory WT, Denman MA, Clark AL. Validating a clinical measure
 997 of levator hiatus size. *Am J Obstet Gynecol.* 2007;196(2):174 e171-174.
- 99872.Keshwani N, McLean L. State of the art review: Intravaginal probes for recording999electromyography from the pelvic floor muscles. *Neurourol Urodyn.* 2015;34(2):104-112.
- 1000 73. Barbosa PB, Franco MM, Souza Fde O, Antonio FI, Montezuma T, Ferreira CH. Comparison
 1001 between measurements obtained with three different perineometers. *Clinics (Sao Paulo)*.
 1002 2009;64(6):527-533.
- 1003 74. Dumoulin C, Gravel D, Bourbonnais D, Lemieux MC, Morin M. Reliability of dynamometric
 1004 measurements of the pelvic floor musculature. *Neurourol Urodyn.* 2004;23(2):134-142.
- 1005 75. Castro Dias D, Robinson D, Bosch R, et al. Initial assessment of urinary incontinence in adult
 1006 male and female patients. In: Abrams P, Cardoso L, Wagg A, Wein A, eds. *Incontinence, 6th*1007 *International Consultation on Incontinence*. Tokyo: ICUD ICS; 2017:2619.
- 1008 76. Caufriez M. Postpartum. Rééducation urodynamique. Approche globale et technique 1009 analytique. In: *Book chapter:2*. Vol Tome 3. Brussels, Belgium: Collection Maïte; 1993:36-1010 44.

- 1011 77. Ashton-Miller JA, DeLancey JOL, Warwick DN, Inventors. Method and apparatus for measuring properties of the pelvic floor muscles. 2002.
- 1013 78. Dumoulin C, Bourbonnais D, Lemieux MC. Development of a dynamometer for measuring
 1014 the isometric force of the pelvic floor musculature. *Neurourol Urodyn.* 2003;22(7):648-653.
- 1015 79. Morin M, Dumoulin C, Gravel D, Bourbonnais D, Lemieux MC. Reliability of speed of
 1016 contraction and endurance dynamometric measurements of the pelvic floor musculature in
 1017 stress incontinent parous women. *Neurourol Urodyn.* 2007;26(3):397-403; discussion 404.
- 1018 80. Parezanovic-Ilic K, Jevtic M, Jeremic B, Arsenijevic S. [Muscle strength measurement of pelvic floor in women by vaginal dynamometer]. *Srp Arh Celok Lek.* 2009;137(9-10):511-517.
- 1020 81. Kruger JA, Nielsen PM, Budgett SC, Taberner AJ. An automated hand-held elastometer for quantifying the passive stiffness of the levator ani muscle in women. *Neurourol Urodyn*. 2015;34(2):133-138.
- 102382.Nunes FR, Martins CC, Guirro EC, Guirro RR. Reliability of bidirectional and variable-
opening equipment for the measurement of pelvic floor muscle strength. *PM R*. 2011;3(1):21-
26.
- 102683.Romero-Culleres G, Peña Pitarch E, Jane Feixas C, et al. Reliability and validity of a new
vaginal dynamometer to measure pelvic floor muscle strength in women with urinary
incontinence. *Neurourol Urodyn.* 2013;32(658-659).
- 1029 84. Morin M, Gravel D, Bourbonnais D, Dumoulin C, Ouellet S. Reliability of dynamometric
 1030 passive properties of the pelvic floor muscles in postmenopausal women with stress urinary
 1031 incontinence. *Neurourol Urodyn.* 2008;27(8):819-825.
- 1032 85. Morin M, Gravel D, Bourbonnais D, Dumoulin C, Ouellet S, Pilon JF. Application of a new method in the study of pelvic floor muscle passive properties in continent women. J *Electromyogr Kinesiol.* 2010;20(5):795-803.
- 1035 86. Morin M, Binik YM, Bourbonnais D, Khalife S, Ouellet S, Bergeron S. Heightened Pelvic
 1036 Floor Muscle Tone and Altered Contractility in Women With Provoked Vestibulodynia. *J Sex*1037 *Med.* 2017;14(4):592-600.
- 1038 87. Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical
 1039 implications. *Clin Biomech.* 2001;16:87-101.
- 104088.Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A1041review. Scand J Med Sci Sports. 1998;8(2):65-77.
- 1042 89. Agyapong-Badu S, Warner M, Samuel D, Narici M, Cooper C, Stokes M. Anterior thigh
 1043 composition measured using ultrasound imaging to quantify relative thickness of muscle and
 1044 non-contractile tissue: a potential biomarker for musculoskeletal health. *Physiol Meas*.
 1045 2014;35(10):2165-2176.
- 104690.Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males:1047reliability and symmetry using the MyotonPRO. Arch Gerontol Geriatr. 2012;55(2):e31-39.
- Bailey L, Dinesh S, Warner M, Stokes M. Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males: Symmetry and within-session reliability using the MyotonPRO. *J Neurol Disord*. 2013;1(16).
- 1051 92. Myoton_AS. MyotonPro User Manual. In: Myoton Muscle Diagnostics; 2018.
- 1052 93. Agyapong-Badu S, Warner M, Samuel D, Stokes M. Practical considerations for standardized recording of muscle mechanical properties using a myometric device: Recording site, muscle length, state of contraction and prior activity. *Journal of Musculoskeletal Research*. 2018;21(2):1850010 (1850013 pages).
- 1056 94. Rosier P, Schaefer W, Lose G, et al. International Continence Society Good Urodynamic
 1057 Practices and Terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study.
 1058 Neurourol Urodyn. 2017;36(5):1243-1260.

- Frawley HC, Galea MP, Phillips BA, Sherburn M, Bo K. Reliability of pelvic floor muscle strength assessment using different test positions and tools. *Neurourol Urodyn*. 2006;25(3):236-242.
- Hundley AF, Wu JM, Visco AG. A comparison of perineometer to brink score for assessment
 of pelvic floor muscle strength. *Am J Obstet Gynecol.* 2005;192(5):1583-1591.
- 1064 97. Bo K, Kvarstein B, Hagen R, Larsen S. Pelvic floor muscle exercises for the treatment of
 1065 female stress urinary incontinence : II. Validity of vaginal pressure measurements of pelvic
 1066 floor muscle strenght and the necessity of supplementary methods for control of correct
 1067 contraction. *Neurourol Urodyn.* 1990;9:479-487.
- Bump RC, Mattiasson A, Bo K, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. *Am J Obstet Gynecol.* 1996;175(1):10-17.
- 107099.Bo K, Constantinou C. Reflex contraction of pelvic floor muscles during cough cannot be
measured with vaginal pressure devices. *Neurourol Urodyn.* 2011;30(7):1404.
- 1072 100. Deffieux X, Raibaut P, Rene-Corail P, et al. External anal sphincter contraction during cough:
 1073 not a simple spinal reflex. *Neurourol Urodyn*. 2006;25(7):782-787.
- 1074 101. Rahmani N, Mohseni-Bandpei MA. Application of perineometer in the assessment of pelvic
 1075 floor muscle strength and endurance: a reliability study. *J Bodyw Mov Ther*. 2011;15(2):2091076 214.
- 1077 102. Sigurdardottir T, Steingrimsdottir T, Arnason A, Bo K. Test-retest intra-rater reliability of vaginal measurement of pelvic floor muscle strength using Myomed 932. Acta Obstet Gynecol Scand. 2009;88(8):939-943.
- 1080 103. Ferreira CH, Barbosa PB, de Oliveira Souza F, Antonio FI, Franco MM, Bo K. Inter-rater reliability study of the modified Oxford Grading Scale and the Peritron manometer.
 1082 *Physiotherapy*. 2011;97(2):132-138.
- 1083104.Quartly E, Hallam T, Kilbreath S, Refshauge K. Strength and endurance of the pelvic floor1084muscles in continent women: an observational study. *Physiotherapy*. 2010;96(4):311-316.
- 1085105.Batista EM, Conde DM, Do Amaral WN, Martinez EZ. Comparison of pelvic floor muscle1086strength between women undergoing vaginal delivery, cesarean section, and nulliparae using a1087perineometer and digital palpation. *Gynecol Endocrinol.* 2011;27(11):910-914.
- 1088 106. Ribeiro Jdos S, Guirro EC, Franco Mde M, Duarte TB, Pomini JM, Ferreira CH. Inter-rater reliability study of the Peritron perineometer in pregnant women. *Physiother Theory Pract*. 2016;32(3):209-217.
- 1091 107. Braekken IH, Majida M, Engh ME, Bo K. Are pelvic floor muscle thickness and size of levator
 1092 hiatus associated with pelvic floor muscle strength, endurance and vaginal resting pressure in
 1093 women with pelvic organ prolapse stages I-III? A cross sectional 3D ultrasound study.
 1094 *Neurourol Urodyn.* 2014;33(1):115-120.
- 1095 108. Friedman S, Blomquist JL, Nugent JM, McDermott KC, Munoz A, Handa VL. Pelvic muscle
 1096 strength after childbirth. *Obstet Gynecol.* 2012;120(5):1021-1028.
- 1097109.Vollebregt PF, Rasijeff AMP, Pares D, et al. Functional anal canal length measurement using1098high-resolution anorectal manometry to investigate anal sphincter dysfunction in patients with1099fecal incontinence or constipation. Neurogastroenterol Motil. 2019;31(3).
- 1100110.Carrington EV, Scott SM, Bharucha A, et al. Expert consensus document: Advances in the
evaluation of anorectal function. Nat Rev Gastroenterol Hepatol. 2018;15(5):309-323.
- 1102 111. Broens PMA, Penninckx FM, Ochoa JB. Fecal Continence Revisited: The Anal External
 1103 Sphincter Continence Reflex. *Dis Colon Rectum.* 2013;56(11):1273-1281.
- 1104 112. Zbar AP, Aslam M, Gold DM, Gatzen C, Gosling A, Kmiot WA. Parameters of the rectoanal inhibitory reflex in patients with idiopathic fecal incontinence and chronic constipation. *Dis* 1106 *Colon Rectum.* 1998;41(2):200-208.
- 1107 113. JElectKin_Recommendations. Standards for Reporting EMG Data. J Electromyogr Kinesiol.
 2017;34(Supplement C):I-II.

- 1109 114. Clancy EA, Negro F, Farina D. Single-channel techniques for information extraction from the surface EMG signal. In: Merletti R, Farina D, eds. *Surface Electromyography : Physiology,*1111 *Engineering and Applications.* Hoboken, New Jersey: John Wiley & Sons, Incorporated;
 1112 2016:731.
- 1113 115. Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. *Front Physiol*. 2017;8:985.
- 1116 116. Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. *J Appl Physiol* (1985). 2015;119(12):1516-1518.
- 1119 117. Disselhorst-Klug C, Schmitz-Rode T, Rau G. Surface electromyography and muscle force:
 1120 limits in sEMG-force relationship and new approaches for applications. *Clin Biomech (Bristol, Avon)*. 2009;24(3):225-235.
- 1122 118. Farina D, Stegeman DF, Merletti R. Biophysics of the generation of EMG signals. In: Merletti
 1123 R, Farina D, eds. *Surface Electromyography : Physiology, Engineering and Applications*.
 1124 Hoboken, New Jersey: John Wiley & Sons, Incorporated; 2016:731.
- 1125 119. Merletti R, Farina D. Analysis of intramuscular electromyogram signals. *Philos Trans A Math*1126 *Phys Eng Sci.* 2009;367(1887):357-368.
- 1127 120. Podnar S, Vodusek DB. Protocol for clinical neurophysiologic examination of the pelvic floor.
 1128 Neurourol Urodyn. 2001;20(6):669-682.
- 1129 121. Vodusek DB. Electromyography. In: Bo K, Berghmans B, Morkved S, Van Kampen M, eds.
 1130 Evidence-based physical therapy for the pelvic floor. Second edition ed.: Churchill
 1131 Livingstone; 2015.
- 1132 122. Bianchi F, Squintani GM, Osio M, et al. Neurophysiology of the pelvic floor in clinical practice: a systematic literature review. *Funct Neurol.* 2017;22(4):173-193.
- 1134 123. Basmajian JV. New views on muscular tone and relaxation. *Can Med Assoc.* 1957;77:203-205.
- 1135 124. Clemmesen S. Some studies on muscle tone. Proc R Soc Med. 1951;44(8):637-646.
- 1136 125. Smith MD, Coppieters MW, Hodges PW. Postural response of the pelvic floor and abdominal muscles in women with and without incontinence. *Neurourol Urodyn.* 2007;26(3):377-385.
- 1138 126. Moser H, Leitner M, Baeyens JP, Radlinger L. Pelvic floor muscle activity during impact activities in continent and incontinent women: a systematic review. *Int Urogynecol J.* 2018;29(2):179-196.
- 1141 127. Brueckner D, Kiss R, Muehlbauer T. Associations Between Practice-Related Changes in Motor
 1142 Performance and Muscle Activity in Healthy Individuals: A Systematic Review. Sports Med
 1143 Open. 2018;4(1):9.
- 1144
 128. Dewaele P, Deffieux X, Villot A, Billecocq S, Amarenco G, Thubert T. Effect of body position
 on reflex and voluntary pelvic floor muscle contraction during a distraction task. *Neurourol Urodyn.* 2018.
- 1147 129. McCrary JM, Ackermann BJ, Halaki M. EMG amplitude, fatigue threshold, and time to task
 1148 failure: A meta-analysis. *J Sci Med Sport*. 2017.
- 1149
 130. Mohseni Bandpei MA, Rahmani N, Majdoleslam B, Abdollahi I, Ali SS, Ahmad A. Reliability
 of surface electromyography in the assessment of paraspinal muscle fatigue: an updated
 systematic review. *J Manipulative Physiol Ther.* 2014;37(7):510-521.
- 1152 131. Glazer HI, Romanzi L, Polaneczky M. Pelvic floor muscle surface electromyography.
 1153 Reliability and clinical predictive validity. *J Reprod Med.* 1999;44(9):779-782.
- 1154 132. Dietz HP. Quantification of major morphological abnormalities of the levator ani. *Ultrasound* 1155 *Obstet Gynecol.* 2007;29(3):329-334.
- 1156133.Dietz HP, Shek KL. Tomographic ultrasound imaging of the pelvic floor: which levels matter1157most? Ultrasound Obstet Gynecol. 2009;33(6):698-703.

- 1158134.Sherburn M, Murphy CA, Carroll S, Allen TJ, Galea MP. Investigation of transabdominal real-
time ultrasound to visualise the muscles of the pelvic floor. Aust J Physiother. 2005;51(3):167-
170.
- 1161 135. Thompson JA, O'Sullivan PB, Briffa K, Neumann P, Court S. Assessment of pelvic floor
 1162 movement using transabdominal and transperineal ultrasound. *Int Urogynecol J.*1163 2005;16(4):285-292.
- 1164
 136. Bo K, Sherburn M, Allen T. Transabdominal ultrasound measurement of pelvic floor muscle activity when activated directly or via a transversus abdominis muscle contraction. *Neurourol Urodyn.* 2003;22(6):582-588.
- 1167 137. Dietz H, Hoyte L, Steensma A. Atlas of pelvic floor ultrasound. Springer-Verlag London
 1168 Limited. 2008.
- 1169 138. Dietz HP. Pelvic Floor Ultrasound: A Review. Clin Obstet Gynecol. 2017;60(1):58-81.
- 1170
 139. Lone F, Sultan AH, Stankiewicz A, Thakar R. Interobserver agreement of multicompartment ultrasound in the assessment of pelvic floor anatomy. *Br J Radiol.* 2016;89(1059):20150704.
- 1172 140. Schaer G. The clinical value of sonographic imaging of the urethrovesical anatomy. *Scand J*1173 *Urol Nephrol Suppl.* 2001(207):80-86; discussion 106-125.
- 1174141.Dietz HP, Wilson PD, Clarke B. The use of perineal ultrasound to quantify levator activity and1175teach pelvic floor muscle exercises. Int Urogynecol J. 2001;12(3):166-168; discussion 168-1176169.
- 1177142.Reddy AP, DeLancey JO, Zwica LM, Ashton-Miller JA. On-screen vector-based ultrasound1178assessment of vesical neck movement. Am J Obstet Gynecol. 2001;185(1):65-70.
- 1179143.Shek KL, Dietz HP. The urethral motion profile: a novel method to evaluate urethral support1180and mobility. Aust N Z J Obstet Gynaecol. 2008;48(3):337-342.
- 1181 144. Haylen BT, de Ridder D, Freeman RM, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for Female Pelvic Floor Dysfunction. *Neurourol Urodyn.* 2010;29(1):4-20.
- 1184 145. Majida M, Braekken IH, Umek W, Bo K, Saltyte Benth J, Ellstrom Engh M. Interobserver repeatability of three- and four-dimensional transperineal ultrasound assessment of pelvic floor muscle anatomy and function. *Ultrasound Obstet Gynecol.* 2009;33(5):567-573.
- 1187 146. Thibault-Gagnon S, Auchincloss C, Graham R, McLean L. The temporal relationship between activity of the pelvic floor muscles and motion of selected urogenital landmarks in healthy nulliparous women. *J Electromyogr Kinesiol.* 2018;38:126-135.
- 147. Morin M, Bergeron S, Khalife S, Mayrand MH, Binik YM. Morphometry of the pelvic floor muscles in women with and without provoked vestibulodynia using 4D ultrasound. *J Sex Med*. 2014;11(3):776-785.
- 148. Braekken IH, Majida M, Ellstrom-Engh M, Dietz HP, Umek W, Bo K. Test-retest and intraobserver repeatability of two-, three- and four-dimensional perineal ultrasound of pelvic floor muscle anatomy and function. *Int Urogynecol J.* 2008;19(2):227-235.
- 1196 149. Dietz HP, Jarvis SK, Vancaillie TG. The Assessment of Levator Muscle Strength: A Validation of Three Ultrasound Techniques. *Int Urogynecol J.* 2002;13(3):156-159.
- 1198 150. Braekken IH, Majida M, Engh ME, Bo K. Test-retest reliability of pelvic floor muscle contraction measured by 4D ultrasound. *Neurourol Urodyn.* 2009;28(1):68-73.
- 1200 151. Costantini S, Esposito F, Nadalini C, et al. Ultrasound imaging of the female perineum: the effect of vaginal delivery on pelvic floor dynamics. *Ultrasound Obstet Gynecol.*1202 2006;27(2):183-187.
- 1203 152. Beer-Gabel M, Teshler M, Barzilai N, et al. Dynamic transperineal ultrasound in the diagnosis
 1204 of pelvic floor disorders: pilot study. *Dis Colon Rectum*. 2002;45(2):239-245; discussion 2451205 238.

- 1206 153. Stafford RE, Ashton-Miller JA, Constantinou CE, Hodges PW. Novel Insight into the
 Dynamics of Male Pelvic Floor Contractions Through Transperineal Ultrasound Imaging. J
 1208 Urol. 2012;188(4):1224-1230.
- 1209 154. Stafford RE, Coughlin G, Hodges PW. Comparison of dynamic features of pelvic floor muscle
 1210 contraction between men with and without incontinence after prostatectomy and men with no
 1211 history of prostate cancer. *Neurourol Urodyn.* 2020;39(1):170-180.
- 1212 155. Aljuraifani R, Stafford RE, Hug F, Hodges PW. Female striated urogenital sphincter
 1213 contraction measured by shear wave elastography during pelvic floor muscle activation: Proof
 1214 of concept and validation. *Neurourol Urodyn.* 2018;37(1):206-212.
- 1215 156. Dietz HP, Shek C, Clarke B. Biometry of the pubovisceral muscle and levator hiatus by three-1216 dimensional pelvic floor ultrasound. *Ultrasound Obstet Gynecol.* 2005;25(6):580-585.
- 1217 157. Dietz HP, Shek C, De Leon J, Steensma AB. Ballooning of the levator hiatus. *Ultrasound*1218 *Obstet Gynecol.* 2008;31(6):676-680.
- 1219
 158. Braekken IH, Majida M, Engh ME, Bo K. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial. *Obstet Gynecol.* 2010;115(2 Pt 1):317-324.
- 1222 159. Dietz HP, Abbu A, Shek KL. The levator-urethra gap measurement: a more objective means 1223 of determining levator avulsion? *Ultrasound Obstet Gynecol.* 2008;32(7):941-945.
- 1224 160. Digesu GA, Robinson D, Cardozo L, Khullar V. Three-dimensional ultrasound of the urethral
 1225 sphincter predicts continence surgery outcome. *Neurourol Urodyn*. 2009;28(1):90-94.
- 161. Ismail S, Morin M, Tu LM. Assessment of the effects of autologous muscle derived cell injections on urethral sphincter morphometry using 3D/4D ultrasound. *World J Urol.*2020;(accepted for publication, 2020 Jan 14).
- Robinson D, Toozs-Hobson P, Cardozo L, Digesu A. Correlating structure and function: three dimensional ultrasound of the urethral sphincter. *Ultrasound Obstet Gynecol*. 2004;23(3):272 276.
- 1232 163. Athanasiou S, Khullar V, Boos K, Salvatore S, Cardozo L. Imaging the urethral sphincter with
 three-dimensional ultrasound. *Obstet Gynecol.* 1999;94(2):295-301.
- 1234 164. Madill SJ, Pontbriand-Drolet S, Tang A, Dumoulin C. Changes in urethral sphincter size
 1235 following rehabilitation in older women with stress urinary incontinence. *Int Urogynecol J.*1236 2015;26(2):277-283.
- 1237 165. Guzman Rojas RA, Kamisan Atan I, Shek KL, Dietz HP. Anal sphincter trauma and anal 1238 incontinence in urogynecological patients. *Ultrasound Obstet Gynecol.* 2015;46(3):363-366.
- 1239 166. Dietz HP. Exoanal Imaging of the Anal Sphincters. J Ultrasound Med. 2018;37(1):263-280.
- 1240 167. Rostaminia G, Peck J, Quiroz L, Shobeiri SA. Levator Plate Upward Lift on Dynamic
 1241 Sonography and Levator Muscle Strength. *J Ultrasound Med.* 2015;34(10):1787-1792.
- 1242 168. Santoro GA, Shobeiri SA, Petros PP, Zapater P, Wieczorek AP. Perineal body anatomy seen
 by three-dimensional endovaginal ultrasound of asymptomatic nulliparae. *Colorectal Dis.*1244 2016;18(4):400-409.
- 1245169.Shobeiri SA, Rostaminia G, White D, Quiroz L. The determinants of minimal levator hiatus1246and their relationship to the puborectalis muscle and the levator plate. *BJOG*. 2013;120(2):205-1247211.
- 1248170.Rostaminia G, Manonai J, Leclaire E, et al. Interrater reliability of assessing levator ani1249deficiency with 360° 3D endovaginal ultrasound. Int Urogynecol J. 2014;25(6):761-766.
- 1250 171. Rostaminia G, Peck JD, Quiroz LH, Shobeiri SA. Characteristics associated with pelvic organ
 1251 prolapse in women with significant levator ani muscle deficiency. *Int Urogynecol J.*1252 2016;27(2):261-267.
- 1253 172. Thakar R, Sultan AH. Anal endosonography and its role in assessing the incontinent patient.
 1254 Best Pract Res Clin Obstet Gynaecol. 2004;18(1):157-173.

- 1255 173. Abdool Z, Sultan AH, Thakar R. Ultrasound imaging of the anal sphincter complex: a review.
 1256 Br J Radiol. 2012;85(1015):865-875.
- 1257 174. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound Elastography:
 1258 Review of Techniques and Clinical Applications. *Theranostics*. 2017;7(5):1303-1329.
- 1259 175. Stafford RE, Aljuraifani R, Hug F, Hodges PW. Application of shear-wave elastography to
 1260 estimate the stiffness of the male striated urethral sphincter during voluntary contractions. *BJU*1261 *Int.* 2017;119(4):619-625.
- 1262 176. Xie M, Feng Y, Zhang XY, Hua KQ, Ren YY, Wang WP. Evaluation of pelvic floor muscle
 1263 by transperineal elastography in patients with deep infiltrating endometriosis: preliminary
 1264 observation. *Journal of Medical Ultrasonics*. 2019;46(1):123-128.
- 1265 177. Xie M, Zhang XY, Liu J, Ding JX, Ren YY, Hua KQ. Evaluation of levator ani with no defect
 1266 on elastography in women with POP. *Int J Clin Exp Med.* 2015;8(6):10204-10212.
- 1267 178. Gachon B, Nordez A, Pierre F, Fradet L, Fritel X, Desseauve D. In vivo assessment of the
 1268 levator ani muscles using shear wave elastography: a feasibility study in women. *Int*1269 Urogynecol J. 2019;30(7):1179-1186.
- 1270 179. Morin M, Salomoni S, Stafford R, Hall L, Hodges PW. Validation of shear-wave elastography
 1271 for evaluating pelvic floor muscle stiffness. *Neurourol Urodyn.* 2019;38(S3):436-438.
- 1272 180. Paluch L, Nawrocka-Laskus E, Wieczorek J, Mruk B, Frel M, Walecki J. Use of Ultrasound
 1273 Elastography in the Assessment of the Musculoskeletal System. *Polish Journal of Radiology*.
 1274 2016;81:240-246.
- 1275 181. Taljanovic MS, Gimber LH, Becker GW, et al. Shear-Wave Elastography: Basic Physics and
 1276 Musculoskeletal Applications. *Radiographics*. 2017;37(3):855-870.
- 1277 182. la Torre MF, Magarelli N, Cipriani A, et al. Applications of Ultrasound Elastography in
 1278 Musculoskeletal Imaging: Technical Aspects and Review of the Literature. *Curr Med Imaging* 1279 *Rev.* 2017;13(3):251-259.
- 183. Kreutzkamp JM, Schaefer SD, Amler S, Strube F, Kiesel L, Schmitz R. Strain elastography as
 a new method for assessing pelvic floor biomechanics. *Ultrasound Med Biol.* 2017;43(4):868872.
- 1283184.Merriam-Webster.Merriam-WebsterOnlineDictionary.In:http://www.merriam-1284webster.com/dictionary/
- 1285 185. Bo K, Frawley HC, Haylen BT, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction. *Int Urogynecol J.* 2017;28(2):191-213.
- 1289 186. Cyr MP, Bourbonnais D, Pinard A, Dubois O, Morin M. Reliability and Convergent Validity
 1290 of the Algometer for Vestibular Pain Assessment in Women with Provoked Vestibulodynia.
 1291 Pain Med. 2016;17(7):1220-1228.
- 1292 187. Pukall CF, Young RA, Roberts MJ, Sutton KS, Smith KB. The vulvalgesiometer as a device to measure genital pressure-pain threshold. *Physiol Meas.* 2007;28(12):1543-1550.
- 1294 188. Zolnoun D, Bair E, Essick G, Gracely R, Goyal V, Maixner W. Reliability and Reproducibility
 1295 of Novel Methodology for Assessment of Pressure Pain Sensitivity in Pelvis. *J Pain*.
 1296 2012;13(9):910-920.
- 1297 189. Loving S, Thomsen T, Jaszczak P, Nordling J. Pelvic floor muscle dysfunctions are prevalent
 in female chronic pelvic pain: A cross-sectional population-based study. *Eur J Pain*.
 2014;18(9):1259-1270.
- 1300190.Tu FF, Fitzgerald CM, Kuiken T, Farrell T, Norman Harden R. Vaginal pressure-pain1301thresholds: Initial validation and reliability assessment in healthy women. Clin J Pain.13022008;24(1):45-50.
- 1303 191. Witzeman K, Nguyen RHN, Eanes A, As-Sanie S, Zolnoun D. Mucosal versus muscle pain
 1304 sensitivity in provoked vestibulodynia. *J Pain Res.* 2015;8:549-555.

- 1305 192. Meister MR, Sutcliffe S, Ghetti C, et al. Development of a standardized, reproducible screening
 1306 examination for assessment of pelvic floor myofascial pain. *Am J Obstet Gynecol.* 2019;220(3).
- 1307193.IASP. IASP Terminology, updated from Part III. In: December 14, 2017 ed. https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Painthreshold2017.Accessed130924Feb2020.
- 1310 194. Ohrbach R, Gale EN. Pressure pain thresholds in normal muscles reliability, measurement effects, and topographic differences. *Pain*. 1989;37(3):257-263.
- 1312 195. Sanses TVD, Chelimsky G, McCabe NP, et al. The Pelvis and Beyond: Musculoskeletal Tender
 1313 Points in Women With Chronic Pelvic Pain. *Clin J Pain*. 2016;32(8):659-665.
- 1314 196. Park G, Kim CW, Park SB, Kim MJ, Jang SH. Reliability and Usefulness of the Pressure Pain
 1315 Threshold Measurement in Patients with Myofascial Pain. *Annals of Rehabilitation Medicine-*1316 Arm. 2011;35(3):412-417.
- 1317 197. Rezaii T, Hirschberg AL, Carlstrom K, Ernberg M. The Influence of Menstrual Phases on Pain
 1318 Modulation in Healthy Women. *J Pain*. 2012;13(7):646-655.
- 1319
 198. Chesterton LS, Barlasb P, Foster NE, Baxter GD, Wright CC. Gender differences in pressure pain threshold in healthy humans. *Pain*. 2003;101(3):259-266.
- 1321 199. Dictionary M. The Free Dictionary. <u>http://medical-dictionary.thefreedictionary.com/</u>
- 1322 200. ICD. ICD Codes. <u>https://www.cdc.gov/nchs/data/icd/10cmguidelines-FY2020_final.pdf</u>.
- 1323 201. Sinaki M, Merritt JL, Stillwell GK. Tension myalgia of the pelvic floor. *Mayo Clin Proc.*1324 1977;52(11):717-722.
- 1325 202. Chen Q, Bensamoun S, Basford JR, Thompson JM, An KN. Identification and quantification
 1326 of myofascial taut bands with magnetic resonance elastography. *Arch Phys Med Rehabil*.
 1327 2007;88(12):1658-1661.
- 1328 203. Sikdar S, Shah JP, Gebreab T, et al. Novel Applications of Ultrasound Technology to Visualize
 1329 and Characterize Myofascial Trigger Points and Surrounding Soft Tissue. Arch Phys Med
 1330 Rehabil. 2009;90(11):1829-1838.
- 1331 204. Rao SSC, Patcharatrakul T. Diagnosis and Treatment of Dyssynergic Defecation. J
 1332 Neurogastroenterol Motil. 2016;22(3):423-435.
- 1333 205. Rao SSC. Constipation: Evaluation and treatment of colonic and anorectal motility disorders.
 1334 *Gastroenterol Clin North Am.* 2007;36(3):687-+.
- 1335 206. DSMMD. *Diagnostic and statistical manual of mental disorders : DSM-5.* 5th ed. ed.
 1336 Arlington, VA: American Psychiatric Association; 2013.
- Parish SJ, Cottler-Casanova S, Clayton AH, McCabe MP, Coleman E, Reed GM. The
 Evolution of the Female Sexual Disorder/Dysfunction Definitions, Nomenclature, and
 Classifications: A Review of DSM, ICSM, ISSWSH, and ICD. *Sex Med Rev.* 2020.
- 1340208.Kaur J, Singh P. Pudendal Nerve Entrapment Syndrome. In: Vol in StatPearls Publishing;13412019: https://www.ncbi.nlm.nih.gov/books/NBK544272/.
- 1342 209. Labat JJ, Riant T, Robert R, Amarenco G, Lefaucheur JP, Rigaud J. Diagnostic criteria for
 1343 pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). *Neurourol Urodyn*.
 1344 2008;27(4):306-310.
- 1345