Surgical Treatment of POP

Christopher Maher Brisbane Australia

Committee 15 Pelvic Organ Prolapse Surgery ICI 2021

C Maher, D Antosh, K Baessler, C Cheon, X Deffieux, R Gutman, J Lee, C Nager, A Schizas, V Sung, R DeTayrac

No COI

Incidence of POP& continence surgery 2012 Haya AmJOG 2015

Distribution of Apical Repairs (Haya AJOG 2015)

Obliterative surgery (colpocleisis)

- Represent 2-3% POP interventions USA
- more common USA> Europe, Australasia
- Usually performed elderly, medically compromised and not sexually active
- Advantages: low morbidity, quick recovery, good results
- *Disadvantage:* sacrifice sexual activity

Outcomes of Vaginal Prolapse Surgery The Role of Apical Support Karyn S. Eilber Obstet Gynecol 2013

Procedure 1999	% surgery 10 yrs later
Ant colporrhaphy (AC)	20.2
Ant colporrhaphy + apical	11.2
Post colporrhaphy (PC)	15.0
Post colporrhaphy + apical	10.2

Data demonstrates apical support should be considered at POP surgery AC + apical repair \downarrow reoperation rate by $\frac{1}{2}$ at 10 years PC + apical repair \downarrow reoperation rate by 1/3 at 10 years

Apical compartment prolapse (2016)

Vaginal approach

Abdominal sacral colpopexy (ASC)

6 trials compared vaginal surgery (sacrospinous or uterosacral suspension, transvaginal mesh to ASC

ASC: ↓ awareness of prolapse, prolapse on exam, reoperation prolapse, less urinary leakage and painful intercourse Vaginal surgery: 21mins quicker

Apical compartment prolapse (2016)

Outcomes	Sacral colpopexy	Vaginal surgery	Relative effect (95% CI)	No of Participants (studies)	Quality of the evidence (GRADE)
Awareness of prolapse	65 per 1000	137 per 1000 (69 to 274)	RR 2.11 (1.06 to 4.21)	277 (3 studies)	$ \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus $ $low^{1,2} $
Re-operation Prolapse	41 per 1000	110 per 1000 (55 to 220)	RR 2.68 (1.34 to 5.36)	385 (4 studies)	$ \bigoplus \bigoplus \bigoplus \ominus $ moderate ³
Recurrent prolapse on examination	232 per 1000	438 per 1000 (309 to 626)	RR 1.89 (1.33 to 2.7)	390 (4 studies)	⊕⊕⊝⊝ low ^{1,4}
Stress urinary incontinence	139 per 1000	259 per 1000 (163 to 409)	RR 1.86 (1.17 to 2.94)	263 (3 studies)	$ \bigoplus \bigoplus \bigoplus \ominus $ moderate ¹
dyspareunia	91 per 1000	230 per 1000 (106 to 501)	RR 2.53 (1.17 to 5.5)	106 (3 studies)	⊕⊕⊖⊖ low ^{1,5}
Operating time (minutes)		operating time 21.49 lower (28 to 14.98 lower)		403 (4 studies)	⊕⊕⊕⊝ moderate ¹
Cost (US dollars)		cost (us dollars) i 3471.97 higher (-3336.2 to 3607.74 higher)		277 (3 studies)	⊕⊕⊖⊖ low ^{1,6}

Apical mesh V native tissue repair 2016

Outcomes	Vaginal colpopexy	Vaginal mesh	Relative effect (95% CI)	No of Participants (studies)	Quality of the evidence (GRADE)
Awareness of prolapse	179 per 1000	193 per 1000 (63 to 589)	RR 1.08 (0.35 to 3.3)	54 (1 study)	$ \bigoplus \bigoplus \bigoplus \ominus \\ moderate^1 $
Recurrent prolapse examination	522 per 1000	183 per 1000 (52 to 673)	0.35 (0.1 to 1.29)	283 (3 studies)	$\oplus \ominus \ominus \ominus$ very low ^{2,3,4}
Reoperation Prolapse	46 per 1000	36 per 1000 (16 to 80)	RR 0.77 (0.34 to 1.73)	497 (5 studies)	$ \bigoplus \bigoplus \bigoplus \ominus \\ moderate^2 $
Bladder injury	14 per 1000	41 per 1000 (12 to 135)	RR 3.0 (0.91 to 9.89)	445 (4 studies)	$ \bigoplus \bigoplus \bigoplus \ominus \\ moderate^2 $
Stress urinary incontinence (de novo)	219 per 1000	300 per 1000 (206 to 436)	RR 1.37 (0.94 to 1.99)	295 (4 studies)	$\oplus \oplus \oplus \ominus$ moderate ²
dyspareunia	43 per 1000	58 per 1000 (25 to 133)	RR 1.35 (0.59 to 3.1)	435 (4 studies)	$ \bigoplus \bigoplus \bigoplus \ominus \\ moderate^2 $

Mesh & native tissue repair similar except for mesh erosion rate 18%

SSF (186) vs HUSL (187) Barber Jama 2014

No difference detected at 2 yrs

- Success rate
 - 60% vs 59% NS
- Adverse events
 - 16.5% vs 16.8% NS

Vaginal based native tissue repairs are satisfactory alternatives for those not suitable for sacral colpopexy

MISC vs OSC

De Sa IUJ 2016

Outcomes	MISC	OSC	Odds Ratio	No. of participants (studies)	Quality of the evidence (GRADE)
Overall Complications	103 per 1000	161 per 1000	OR 0.91 (0.53 to 1.57)	2354 (7 trials)	⊕⊖⊖⊖ Very low
Intraoperative complications	26 per 1000	39 per 1000	OR 0.83 (0.51 to 1.34)	2303 (6 Trials)	⊕⊕⊕⊖ low
Operating time	Operating tim	ie was 87.5 mins high (56.9 to 116.34)	er in the MISC	183 (2 Trials)	⊕⊕⊕⊖ very low
Transfusion rate	9 per 1000	22 per 1000	OR 0.41 (0.2 to 0.83)	2303 (6 trials)	⊕⊕⊕⊝ low
Mesh erosion	4 per 1000	5 per 1000	OR 0.98 (0.38 to 1.1)	2176 (6 RCTs)	⊕⊕⊕⊖ very low
Length of stay days	MD	1.6 days shorter in I (-1.9 to -1.2)	MISC	1472 (4 trials)	⊕⊕⊕⊖ very low

Lap vs Robotic SC RCT

Paraiso 2011 12/12

- = &个 objective & functional outcomes
- ↓operating time (199 +/-46 vs 265 +/-50 min)
- ↓NSAIDS (11days versus 20 days)
- Sig. cheaper (MD -\$1936 95%Cl 417 to 3454)

Anger 2014 6 month

- = & ↑ objective & functional outcomes
- ↓operating time (178 +/-46 vs 203 +/-50 min)
- ↓pain score 1 week (2.6 versus 3.5)
- Sig. cheaper (\$12000 versus \$21000)

Laparoscopic approach associated with significant leaning curve LoE3

Lap vs Robotic SC Paraiso 2011, Anger 2014

- Both improved and equal anatomical and functional outcomes
- Robotic surgery 40-70 minutes longer
- Robotic surgery more pain post operatively
- Robotic surgery more expensive than laparoscopic approach

Laparoscopic approach associated with significant leaning curve LoE3

Lap vs Robotic SC RCT

Van Zanten 2019

- RSC & RSRP
- OT \downarrow 25% after 28 cases
- Proficiency (intra-operative complications CUSUM analysis)
 78 cases

Linder 2016

- 145 Mayo Rochester
- OT time 5.3h to 3.6hr 7 yrs
- OT plateaued 60 cases
- C-D ≥2 intra-op 55 cases
- Post &intra-operative complications 84 cases

E-Care 7 year anatomic outcome Nygaard 2014 JAMA

39% monofilament macroporous mesh (>50% multifilament mesh)
36% concomitant hysterectomy (5x > mesh exposure)
48% permanent sutures

LSC 7 year review Pacquee 2019 Obstet Gynecol

- 331 85% response
- Polypropylene mesh 80% vault, 20% SCH
- 84% improvement on PFIC
- Anatomic failure vault 8%, anterior 22% post 28%
- Reoperation rate 17.8%
 - Graft complications 7%: recommended non permanent sutures
 - SUI 7%
 - Prolapse 3.3%
 - High anatomic failure consider concomitant repairs

Sacral colpopexy Monofilament mesh, absorbable suture

3-6 yrs van Zante RSC (IUJ)

- 148
- 3.1% mesh exposure

Baines UK 2019 (IUJ)

- 600 LSC
- 0.7% mesh exposure

Vault Prolapse ICI 2021 Summary

Ap	pical prolapse	GoE
•	Apical suspension at AC or PC significantly reduces the need for subsequent prolapse surgery	В
Va	ult prolapse (post hysterectomy)	
•	Sacral colpopexy has significant anatomical and functional advantages when compared with a broad group of vaginal surgery (±mesh)	A
•	Vaginal apical suspensions appropriate those not suitable for SC (Delphi)	С
•	Transvaginal apical mesh confers no advantage when compared to NTR	А
•	Uterosacral & sacrospinous colpopexy have similar efficacy for apical prolapse	В
•	LSC has advantages over both robotic and open approach however the learning curve with both laparoscopic and robotic approach is significant	В
•	macroporous monofilament polypropylene mesh + absorbable sutures \downarrow risk mesh exposure longterm and are recommended at sacral colpopexy	В

Relative Contraindications to Uterine Preserving Surgery

Uterine abnormalities

Fibroids, adenomyosis, endometrial pathology sampling

Current or recent cervical dysplasia

Abnormal menstrual bleeding

Post-menopausal bleeding

Cervical elongation

Familial cancer BRAC1&2: ↑risk ovarian cancer and

theoretical risk fallopian tube and serous endometrial cancer

Hereditary Non-Polyposis Colorectal Cancer (Lynch Syndrome):

60% lifetime risk endometrial cancer

Tamoxifen therapy

Obesity: up to 3-fold increased risk endometrial cancer

Unable to comply with routine gynaecology surveillance

Uterine preservation or hysterectomy & subsequent cancer

• Life time risk relevant Cancer Cervical 0.6% Uterine 2.7% Ovarian 1.4%

Pearce 2015 AACR

- Routine BSO 10x↓ small risk of ovarian cancer without ↑Morbidity when stratified for age Jacoby 2011 Acrh Int Med Parker 2013 Obstet Gynecol 2013
- Bilateral salpingectomy in those retaining ovaries vorian Ca (OR 0.51, 95% CI 0.35-0.75)
 Yoon 2016 Fur J Cancer

Sacrospinous Hysteropexy vs SS Hysterectomy & NTR

Reference	Study type and	Review	Success N (%)		Reoperatio	on prolapse	Complications
	surgery	months	< stage,	/grade 2			
			Hysteropexy	Hysterectomy	Hysteropexy	Hysterectomy	
Schulten 2019 ³³ RCT	SSHP vs TVH/USLS	60	101/102 (99)*	94/102 (92)*	3/102 (3)	7/102 (7)	
Detollenaere 2015 ³¹ RCT	SSHP vs TVH/USLS	12	102/102 (100)*	96/100 (96)*	1/102 (1)	4/102 (4)	Death: 0 vs 1 Reop bleeding: 0 vs 1
Dietz 2010 ³⁰ RCT	SSHP vs TVH/USLS	12	27/34 (79)**	30/31 (97)**	4/35 (11)	2/31 (6)	1 ureteral obstruction - TVH
Jeng 2005 ³⁴ RCT	SSHP vs TVH	6	MD	MD	MD	MD	Buttock pain 15%
Plair 2021 Retro cohort	Ant SSHP vs TVH/USLS or SSLF	8	46/50 (92)***	89/97 (92%)***	1 (2) surgery 2 (4) pessary	0 3 (3) pessary	Bladder injury: 0 vs 2 Ureteral kink/injury: 1 vs 1 Transfusion: 1 vs 4
Lo 2015 ³⁸ Retro cohort	SSHP vs TVH/SSLF	86	13/26 (50)	86/120 (72)	0/26	2/120 (2)	Vault infection, inpatient care: 0 vs 1
Hefni 2003 ³⁵ Pros cohort	SSHP vs TVH/SSLF	33	57/61 (94)~	46/48 (96)~	3/61 (5)	2/48 (4)	Buttock pain 3% vs 4% Transfusion 0 vs 4%
Van Brummen 2003 ³⁷	Retro Cohort SSHP vs TVH	19	39/44 (89)	28/30 (93)	3/57 (5)	3/52 (6)	Hemorrhage: 2% vs 7% Nerve injury: 2% vs 0
Maher 01 ³⁶ Retro	SSHP vs TVH/SSLF	26 vs 33	20/27 (74)	21/29 (72)	2/27 (7)	2/29 (7)	Buttock pain 6% vs 3% Dyspareunia 7% vs 3%
Hefni 2006 ³⁹ Retro	SSHP vs TVH/SSLF	57	60/65 (92)~	114/117 (97)~	MD	MD	Buttock pain 7% Dyspareunia: 2
Total			363/409 (88.8)	508/574 (88.5)	16/358 (4.5)	18/382 (3.8)	
			MD 0.3% (-0.1	%,2.9%),p=0.8	MD 0.2%(1%	%, 2.5%) p=0.9	

Vaginal Mesh Hysteropexy versus Vaginal Hysterectomy and Vaginal Mesh Repair

Reference	Study type and surgery	Review (months	Succes < sta	s N (%) 1ge 2	Complications	Mesh exposure N(%)	
)	Hysteropexy	Hysterectomy		HP	Hyst
Chu 2011 ⁴⁷ Retro Cohort	(Perigee/Apog ee) SSHP/graft vs TVH/VMR	9	50/52 (96)	39/39 (100)	Abnormal sensation: 3 vs 3 Transfusion: 0 vs 1	2/52 (4)	5/39 (13)
Neuman 2007 ¹⁵ Retro cohort	(post IVS) SSHP/graft vs TVH/VMR	29	32/35 (91)*	42/44 (95)*	None	4/35 (11)	6/44 (14)
Vu 2012 ⁴⁹ Retro	(Uphold) SSHP/graft vs TVH/VMR	12	52/53 (98)	22/24 (96)	Left labial numbness: 1	1/53 (2)	2/24 (8)
Huang 2015 ⁴⁸ Retro	(Total Prolift) SSHP/graft vs TVH/VMR	30	74/78 (95)	23/24 (96)	Dyspareunia: 1 vs 0 Vaginal pain: 2 vs 0 op mesh exposure: 2 vs 3	6/78 (8)	5/24 (21)
Ker 2018 ¹⁰⁵ Prospective	(Uphold) SSHP/graft vs TVH/VMR	6	64/66 (97)	30/30 (100)	Dyspareunia: 2 vs 3 Hematoma: 0 vs 2	1/66 (2)	0/30
TOTAL			272/284 (96)	156/161 (97)		14/ 284 (5)	18/161 (11)
P value			-1.1% (-4.6%,	, 2.9%) p=0.5		-6.1%(-12	%, -0.8%)

Sacral Hysteropexy versus Hysterectomy and Uterosacral Suspension

Reference	Study type and surgery	Review months	Success N (%) < stage 2		Reoperatic (includes reope	on prolapse s planned ration)	Complications	Mesh e N (kposure %)
			HP	Hyst	HP	Hyst		HP	Hyst
Roovers 2004 ⁵¹	RCT ASHP vs TVH/USLS	12	26/41 (63)	25/41 (61)	9/41 (22)	1/41 (2)	Transfusion: 1 vs 2 Bowel injury: 0 vs 1 Vault abscess: 2 vs 0 Reop: 3 vs 1	2/41 (5)	n/a
Jeon 2008 ⁵⁵	Retro Cohort ASHP vs TAH/USLS	36	35/35 (100)	52/70 (74)	MD	MD	Ureteral obstruction: 0 vs 1 SBO: 0 vs 1	0/35	n/a
Rahmanou 2014 ⁵²	RCT LSHP vs TVH/USLS	12	MD	MD	8/40 (20)	7/39 (18)	None	0/40	n/a
Lone 2018 ⁵³	Pros Cohort LSHP vs TVH/midlin e USLS	24	MD	MD	2/44 (5)*	3/81 (4)	Bowel injury: 2 vs 0 Bladder injury: 0 vs 2	0/44	n/a
Sukur 2020 ⁵⁴	Retro cohort LSHP vs TVH/midlin e USLS	48	MD	MD	3/46 (7)	10/86 (12)	MD	MD	n/a
Total			61/76 (80)	77/111 (69)	22/171 (13)	21/247 (9)		2/160 (1)	n/a
P value			11% (-2%, 23	3%) p=0.09	4.4% (-2%,	11%) p=0.2.			

Sacral Hysteropexy vs Hysterectomy SC

Author, Year	Study type and surgery	Review (mo)	Success N (%) < stage 2 Reoperation prolapse		Success N (%) < stage 2 N (%)		esh exposure N (%)	
			HP	Hyst	HP	Hyst	HP	Hyst
Costantini, 2005 ^{<u>195</u>}	Prospective Cohort ASHP vs TAH/SCP	51	31/34 (91)*	35/38 (92)*	0/34 (0)	0/38 (0)	0/34	3/38 (8)
Costantini, 2013 ¹⁹⁶	Prospective Cohort ASHP vs TAH/SCP	12	32/32 (100)**	36/36 (100)**	0/32 (0)	0/36 (0)	MD	MD
Jeon, 2008 ^{<u>198</u>}	Retrospective Cohort ASH vs TAH/SCP	36	35/35 (100)	60/63 (95)	MD	MD	0/35	5/63 (8)
Bai, 2005 <u>197</u>	Retrospective Cohort ASHP vs TAH/SCP	12	10/10 (100)^	18/19 (95)^	MD	MD	0/10	3/19 (16)
Costantini, 1998 ²⁰⁰	Retrospective ASHP vs TAH/SCP	32	7/7 (100)	8/9 (89)	MD	MD	0/7	0/9
Pan, 2015 <u>¹⁶⁸</u>	Retrospective Cohort LSHP vs TLH/LSCP	33	47/65 (72)~	30/34 (88)~	10/66 (15)†	0/34 (0)†	0/65	0/34
Iliano, 2020	Prospective Cohort LSHP vs LSH/LSCP	65	47/54 (87)	77/82(94)	0/54(0)	0/82 (0)	2/54	6/82
Gagyor 2021	Retro LSHPvs TLHLSCP	12	30/38 (79)		MD	MD	1/38	3/233
Total			254/293 (87%)	302/327 (92)	12/242 (5)	0/234	3/259 1.2%)	21/292 (7.2%)
P value			P =	0 02	P = 0	001		P = 0 001

Supracervical Hyst vs total hyst SC Myers 2015 Int J Urogynecol

- Retrospective 1 year review robotic SC
- 43 THSC vs 40 Supracervical Hyst SC
- On examination recurrent prolapse 41.9 % vs 20.0 %, OR 2.8, 95 % CI, 1.1-7.7 (Loe 3)

Sacrohysteropexy vs SSHP needs further evaluation

Hysteropexy vs Hysterectomy; 3 large database data

California	Hysteropexy	Hysterectomy
Dallas 2018	42.340	51,490
Reop POP	4.4%	3.0%
POP+Apical Apical	3.3%	1.9%
Anterior	2.2%	1.3%
Periop Complication Transfusion Infection/ Sepsis Urological injury	1.5% 0.4% 0.3%	2.5% 0.9% 0.9%

2. 310,000 French 2008-2014 (all POP surgery)

 4.4% reoperation, 55% vaginal, 40% abdo 5% combined
 Hyst 0.51 & Abdo approach 0.62 ↓ pOP surgery Mairesse 2020

 3. Danish trial HSP416 manchester 2786, hyst 4045,

5yr reop HSP 30% Manchester 7% hyst 11%

Lots preop differences in groups(Husby 2019)

Mesh erosion rate $SCP \pm Hysterectomy$

Reference	Review months	SCP surgery	Mesh	No hyst Cuff intact	Total Hyst	Sub-total Hyst	P value
Jeon, 2008 ⁵⁵	36	Open	TEFLON Marlex	0/35	5/63		
Jeon, 2009 ⁷⁹	66	Open	TEFLON Marlex PP)	0/31	4/26		
Cundiff 2008 ⁷⁵	24	Open	Mersilene(PE) PP Gortex,	8/239	12/83		
Wu, 2006 ⁸⁰	15	Open	GORETEX MERSILENE PP	10/212	7/101		
Costantini, 2005 ⁵⁶	51	Open	MARLEX(PP)	0/34	3/38		
Bai 2005 ⁵⁹	12	Open	Synthetic mesh	0/20	3/19		
Bensiger, 2005 ⁸¹	12	Open	PP	0/35	4/49	0/37	
Brizzolara 2003 ⁸²	35	Open	80% PP 20% allografts	0/64	1/60		
Culligan 2002 ⁸³	24	Open	Synthetic mesh	3/234	3/11		
Cvach 2012 ⁵⁸	17	Open	70% PP 30% Porcine	0/16	3/9 (33)		
Ginath 2013 ⁸⁴	7	Open	PP	2/82		1/195	
Total Open SCP				23/1002 (2.3%)	45/459 (9.8%)	1/232 (0.4%)	<0.0001
Stepanian 2008 ⁸⁵	12	Lap	РР	2/272	3/130		
Tan Kim, 2011 ⁷⁶	15	Lap ±RA	PP	5/110	13/57*	1/21	
Osmundsen 2012 ⁸⁶	3	RA Lap	РР		8/49	0/31	
Bojahr 2012 ⁶²	8	Lap	PP	0/19	MD	0/151	
Warner 2012 ⁷⁷	6	Lap	РР	1/95	9/187*	0/92	
Crane 2014 ⁸⁷	2	RA Lap	PP	6/118	3/79	0/33	
Myers 2015 ⁸⁸	12	RA Lap	PP		3/40	1/43	
Pan 2015 ¹⁷	33	Lap	PP	0/65	0/34		
Gracia 2015 ⁶¹	12	Lap	PP	0/15		0/30	
Nosti 2016 ⁷⁸	9	Lap ±RA	РР		2/123**	1/59	
Davidson 2018 ⁸⁹	6	Lap ±RA	РР		1/45*	2/116	
Iliano 2020 ⁶⁰	65	Lap ±RA	PP	2/54	6/82		
van Zanten 2019 ⁹⁰	48	RA Lap	PP	1/34		2/61	
Campagna 2019 ⁹¹	12	Lap	Titan coated PP	1/59	2/18	0/131	
Culligan 202092	66	RA Lap	PP	0/76		0/240	
Gagor 2021	12	Lap	РР	0/38	0/38	1/195	
Campagna 2021	24	Lap	PP	0/78		0/58	
Total for Lap SCP				18/1033 (1.7%)	50/882 (5.7%)	8/1261 (0.7%)	<0.0001
Total				41/2035 (2.0%)	95/1341 (7.1%)	9/1493 (0.6%)	<0.0001

Uterine Prolapse ICI 2021 Summary

Ute	erine prolapse	GoE
•	Relative contraindications to uterine preservation are listed in the Table 6.	С
•	Salpingectomy ${oldsymbol {arphi}}$ risk of ovarian Ca in women retaining ovaries at the time of hysterectomy	В
•	Opportunistic salpingectomy which is not able to be performed at vaginal hysteropexy should be included in the shared decision making process (Delphi)	С
•	BSO at hysterectomy in post-menopausal women \checkmark rate of ovarian Ca without \uparrow morbidity	В
•	Vaginal hysteropexy is equally effective as vaginal hysterectomy with apical suspension and is associated with reduced blood loss and operating time	В
•	Large database studies demonstrated lower reoperation rates for recurrent prolapse and slightly higher complication rates in the hysterectomy group compared to hysteropexy.	С
•	Vaginal hysterectomy with apical suspension and sacrohysteropexy similar outcomes	С
•	Sacrohysteropexy (SHP) lower success rates than sacrocolpopexy with total hysterectomy.	С
•	Sacral colpopexy with total hysterectomy is not recommended due to high rate of mesh exposure	В
•	While Supracervical hysterectomy & sacrocolpopexy has a lower rate of mesh exposure than total hysterectomy & further evaluation is required of this intervention	С

Native tissue vs permanent mesh Maher et al Cochrane review 2016

Outcomes	Native tissue	Permanent mesh	Relative effect (95% CI)	No. of participants (studies)	Quality of the evidence (GRADE)
Awareness of prolapse	229 per 1000	130 per 1000 (101 to 167)	RR 0.57 (0.44 to 0.73)	1133 (9 studies)	$\oplus \ominus \ominus \ominus$ moderate
Recurrent anterior compartment prolapse	405 per 1000	134 per 1000 (101 to 178)	RR 0.33 (0.25 to 0.44)	1808 (15 studies)	⊕⊕⊕⊝ low
Repeat surgery prolapse	40 per 1000	18 per 1000 (10 to 32)	RR 0.44 (0.24 to 0.81)	1461 (11 studies)	⊕⊕⊕⊖ moderate
Repeat surgery for prolapse, SUI or mesh exposure	54 per 1000	93 per 1000 (66 to 131)	RR 1.71 (1.21 to 2.42)	1527 (12 studies)	$\oplus \ominus \ominus \ominus$ moderate
Apical or posterior compartment prolapse	95 per 1000	176 per 1000 (96 to 321)	RR 1.85 (1.01 to 3.37)	300 (2 studies)	⊕⊕⊕⊝ low
SUI de novo (1-3 yrs)	68 per 1000	106 per 1000 (69 to 160)	RR 1.55 (1.02 to 2.35)	939 (6 studies)	⊕⊕⊕⊝ low
Dysparenia de novo (1-2yrs)	38 per 1000	71 per 1000 (36 to 139)	RR 1.86 (0.94 to 3.66)	583 (8 studies)	⊕⊕⊕⊖ moderate

Anterior compartment: mesh vs native tissue

Advantages Mesh

↓ awareness prolapse
↓ prolapse on exam
↓ Reoperation for POP

Disadvantages Mesh \uparrow Operating time: (18mins) ↑blood loss (small 65mls) \uparrow POP apical/ posterior RR: 1.89 ↑de novo SUI RR: 1.75 mesh exposure: 11.6% reoperation exposure: 6.6% ↑total reoperation: 2X No difference: QoL or dyspareunia

Native tissue vs Biological graft

Maher et al Cochrane review 2016

Outcomes	Native tissue	Biological graft	Relative effect (95% Cl)	No. of participants (studies)	Quality of the evidence (GRADE)
Awareness of prolapse	105 per 1000	135 per 1000 (51 to 353)	RR 1.29 (0.49 to 3.36)	439 (3 studies)	⊕⊖⊖⊖ Low
Recurrent anterior compartment prolapse	333 per 1000	246 per 1000 (183 to 330)	RR 0.74 (0.55 to 0.99)	646 (7 studies)	⊕⊕⊕⊝ low
Repeat surgery prolapse	51 per 1000	50 per 1000 (26 to 97)	RR 0.98 (0.51 to 1.89)	650 (7 studies)	⊕⊕⊕⊝ low
Operating time (mins)		operating time 10.35 higher (6.24 to 14.45 higher)		113 (2 studies)	⊕⊕⊕⊖ low
SUI	425 per 1000	293 per 1000 (161 to 540)	RR 0.69 (0.38 to 1.27)	218 (2 studies)	⊕⊕⊕⊖ low
Dysparenia de novo (1-2yrs)	138 per 1000	158 per 1000 (70 to 322)	OR 1.17 (0.47 to 2.96)	151 (2 studies)	⊕⊕⊕⊝ low

• AC generally procedure of choice anterior

compartment prolapse

 permanent mesh repair may have a role in recurrent prolapse if patient fully understands the risk/benefit

profile of the intervention

Posterior vaginal repair superior to transanal repair

- Lower rate rectoenterocele RR 0.24 95%CI 0.09-0.64
- Higher blood loss and postoperative narcotic use
- Obstructed defecation & dyspareunia similar

Posterior compartment ICI 2021

- Fascial plication >objective outcome to site-specific repair. GoE C
- 个 dyspareunia levatorplasty (GoE C)
- Transvaginal approach superior transanal approach (GoE A)
- No evidence any benefit mesh or xenograft repair for posterior vaginal wall prolapse. (GoE B)
- No data demonstrates ventral rectopexy with or without graft attachment to the posterior vaginal effective rectocoele. (GoE D)
- Limited LoE 3 combined rectal & vaginal prolapse benefit from colorectal & gynecologist collaborating closely. (GoE C)

POP Surgery & bladder function

POP Surgery & bladder function

POP Surgery & bladder function

Pro	lapse surgery and lower urinary tract functions 2021	GoE
•	POP + SUI consider POP and continence surgery	A
•	POP + occult SUI consider POP & continence surgery (consider staged procedure)	В
•	POP without occult SUI does not require concomitant continence surgery.	В
•	Preoperative OAB resolves in approximately 50% post prolapse surgery although the impact of concomitant non- surgical treatment on this date has not been clarified.	D
•	The rate of reported denovo OAB varies widely 2-32% with further clarification required.	С
•	Rates of Urinary retention following POP surgery varies from 0-34% and is nearly always temporary.	С
•	Pre-operative urinary retention resolves in as many as 90% post prolapse surgery	С

Sexual function biologic graft vs NTR

RCT	Sexual Activity		De novo dys	pareunia	Total dyspareunia		PISQ-1Score or other		
	BG	NT	BG	NT	BG	NT	BG	NT	
Paraiso 200 6	Pre 17/32 Post 16/32	Pre 17/37 Post 19/33			Pre 12/32 Post 3/32	Pre 13/37 Post 9/33	Pre 33 (8) Post 37 (5)	Pre 29 (8) Post 36 (5)	
Meschia2007 [21]	Pre 12/65 Post MD	Pre 11/74 Post MD -	-	-	Pre MD Post 7/47	Pre MD Post 5/48			
Guerette 2009 [58]	MD	MD	0/20	1/16	Pre MD Post 3/20	Pre MD Post 3/16	Pre 16 Post MD	Pre 13.9 Post MD	
Feldner 2010, 2012	Pre op 23/29 Post op -	Pre op 22/27 Post op -	-	-	Pre MD Post 5/29	Pre MD Post 4/27	FSFI Pre 5.5 (7.2) Post 24.9 (7.5)	FSFI Pre 15.3 (6.8) Post 24.2 (7)	
Dahlgren 2011	Pre 33/69 Post 35/69	Pre 29/64 Post 34/64	-	-	Pre 19/69 Post 6/65	Pre 9/64 Post 8/60	-	-	
Menefee 2011	-	-	2/26	3/24	-	-	Change 1 (-35 to 24)	Change 0 (- 32 to 16)	
Sung 2012	Pre 50/75 Post MD	Pre 54/75 Post MD	-	-	Pre MD Post 7/56	Pre MD Post 4/57	-	-	
Robert 2014							Pre 31 (7) Post 38 (10)	Pre 33 (8) Post 38 (8)	
Damiani 2016	-	-	0/28	0/59	Pre op 6/28 Post op 9/28	Pre 12/59 Post 3/59	-	-	
Glazener 2016 [55] Trial 2	Pre 135/337 Post 152/312	Pre 119/339 Post 138/313	-	-	Pre 21/186 Post 8/165	Pre 20/175 Post 9/149	ICIQ-VS Pre 22.8 (9.1) Post 9 (9.1)	ICIQ-VS Pre 21.7 (8.7) Post 7.1 (6.9)	
Total	Pre 270/607 (44.5%) Post203/413 (49.2%)	Pre 252/484 (52%) Post 191/410 (46.6%)	2/74 (2.7%)	3/99 (3%)	Pre 58/315 (18.4%) Post 48/442 (11.4%)	Pre 54/334 (16.2%) Post 45/449 (10%)	No diffe	erence	
	RR 1.1 (0.91, 1.)	21) p=0.50)	RR 0.9 (0.2,5	5.2) p=0.9	RR 1.1 (0.7, 1.6) p=0.68)			

RCT	Sexual Activity		De novo		Total dyspareunia	
			dyspare	unia		
	TVM	NT	TVM	NT	TVM	NT
Altman 2011	Pre 80/200 Post MD	Pre 73/189 Post MD	-	-	Pre MD Post 8/110	Pre MD Post 2/101
/ollebregt 2011	Pre 32/50 Post MD	Pre 31/48 Post MD	3/20	2/21	MD	MD
Sivaslioglu 2008	MD	MD	2/43	0/42	MD	MD
Ngyuyen 2008	Pre 27/37 Post 23/37	Pre 28/38 Post 26/37	2/23	4/26	Pre MD- Post 6/27	Pre MD- Post 6/28
Sokol 2012 1 yr Gutman 3yr	Pre op 14/25 Post 13/25	Pre 11/26 Post 14/26	1/11 3/12	3/14 1/11	Pre 3/17 Post 8/12	Pre 3/18 Post 8/10
Rudnicki 2014 1yr Rudnick(3yr)	Pre MD Post 36/76	Pre MD Post 48/78	2/76	0/76	-	-
l-Nazer 2012	Pre 17/20 Post 18/20	Pre 18/20 Post 17/20	0/18	1/17	Prep 7/17 Post 7/18	Pre 8/18 Post 8/17
deTayrac 2013 1yr Allegre 2019 (7yr)	Pre 28/75 Post 31/75	Pre 21/72 Post 28/72	3/13	1/14	Pre 10/28 Post 6/22	Pre 3/21 Post 5/24
amblin 2014.	Pre 15/33 Post18/33	Pre 12/35 Post 15/34	1/34	1/33	-	-
Delroy 2013	Pre 21/40 Post 23/40 Pro 21/42	Pre 19/39 Post 19/39 Pro 23/42	-	-	Pre MD– Post 2/21	Pre MD – Post 4/19
Manafaa 2011	PTE 21/45	PTE 25/45	2/45	2/24		
Carey 2009	Pre 34/69 Post 30/63	- Pre 36/70 Post 33/62	5/18	5/12	Pre 11/34 Post 12/30	- Pre 20/36 Post 13/33
Nithagen 2011.[47] [48] (1 yr) Nilani 2018.[49] (7 yr)	Pre 52/93 Post 53/93 Post 30/66	Pre 49/97 Post 51/97 Post 30/72	3/37	3/29	Pre 13/52 Post 9/53 Post 13/64	Pre 16/49 Post 12/51 Post 12/72
Dos Reis Brandão da Silveira 2015	Pre 25/88 Post 25/88	Pre 14/81 Post 14/81	-	-	Pre MD- Post 3/88	Pre MD Post 5/81
Svabik 2014 [52]	-	-	-	-	Post 2/36	Post 1/34
de Tayrac 2008 [53]	Pre op 8/24 Post 9/24	Pre op 12/25 Post op -	-	-	-	-
Damiani 2016 [54]	-	-	4/30	0/59	Pre 5/30 Post 6/30	Pre 12/59 Post 3/59
Glazener 2016 [55] Primary POP	Pre 148/399 Post 169/360	Pre 152/407 Post 175/360	-	-	Pre 13/197 Post 9/173	Pre 18/217 Post 8/186
Glazener 2016 [55] Recurrent POP	Pre 26/50 Post 20/41	Pre 16/53 Post 18/45	-	-	Pre 5/32 Post 3/23	Pre 1/22 Post 0/18
Glazener 2016 [55] Frial 4 Recurrent POP	Pre 14/41 Post 16/39	Pre 6/24 Post 6/20	-	-	Pre 0/20 Post 1/18	Pre 0/8 Post 0/6
Nager et al 2019 [57]	Pre 30/88 Post 26/88	Pre 40/87 Post 31/87	2/57	3/52	Pre 10/26 Post 5/26	Pre 17/37 Post 5/31
Fotal [*]	Pre 620/1437 (43.1%) Post 561/1206 (46.5%)	Pre 586/1408 (41.6%) Post 539/1154 (46.7%)	32/451 (7.1%)	30/462 (6.5%)	Pre 77/453 (17%) Post 86/769 (11%)	Pre 98/485 (20.2%) Post 77/776 (9.9%)
	RR 1.0 (0.91.1.09) P=0.92		RR 1.1 (0.7.1.8) p=0.61		RR 1.13 (0.84, 1.51) P=0.42	

vaginal mesh repair vs NTR PISQ

vaginal mesh vaginal repair (no mesh) Mean Difference Mean Difference Mean SD Total Mean Total Weight Study or Subgroup SD IV, Fixed, 95% CI IV, Fixed, 95% CI 13.6 9.3 12.5 9.3 1.10 [-4.35, 6.55] de Tayrac 2008 21 24 2.6% 5.3 de Tayrac 2013 31 39 35.6 5.8 12.0% -4.60 [-7.12, -2.08] 36 34 Iglesia 2010 6 32 35 6 9.0% -1.00 [-3.92, 1.92] 33 34 6 37 3 Nguyen 2008 33 38 16.5% 1.00 [-1.16, 3.16] 11.9 5.5 Rudnicki 2014 76 13.1 5.6 24.9% -1.20 [-2.95, 0.55] 78 Svabik 2014 32.6 6.3 35.6 5.1 10.7% -3.00 [-5.68, -0.32] 36 34 34 6.7 34.7 5.7 24.4% -0.70 [-2.47, 1.07] Whittagen 2011 93 97 Total (95% CI) 334 340 100.0% -1.24 [-2.11, -0.37] Heterogeneity: Chi² = 13.72, df = 6 (P = 0.03); l² = 56% -'n -4 Test for overall effect: Z = 2.78 (P = 0.005) favours repair no mesh favours vaginal mesh

4

POP Surgery & sexual function

	Prolapse surgery and sexual function	
•	Sexual function measured with validated PISQ has lower sexual satisfaction than non mesh vaginal repair while the rates of denovo dyspareunia and total dyspareunia are similar	В
•	Synthetic transvaginal mesh has higher rate of dyspareunia compared to sacrocolpopexy	С
•	Sacrocolpopexy has a non-significant tendency to lower rates of de novo and total dyspareunia as compared to vaginal native tissue repairs	С
•	When comparing vaginal biologic grafts to vaginal native tissue repairs, there are similar decreases in postoperative dyspareunia and similar changes in sexual function	С
•	When reporting prolapse surgery outcomes pre and postoperative sexual activity, dyspareunia and use of validated sexual function questionnaire and rate denovo dyspareunia preferrable	С

Risk Factors recurrent prolapse

Outcomes	Multivariate	Risk quantification	GoE
	evidence		
Patient factors			
Age	<60 yrs	OR 3.2-4.1(<u>672</u> , <u>675</u>)	GoE B
BMI/Weight (Kgs)	Conflicting		
Family history	Conflicting		
Stage 3-4 prolapse	Yes	RR 2.0-3.9(<u>672-674</u>)	GoE A
Prior Pelvic floor Surgery	Conflicting		
Levator defect			
Size Genital Hiatus	Conflicting data		
Poor levator strength	Not risk factor		GoE C
Levator defects	Conflicting data		
Type collagen	Not risk factor		
Perioperative Factors			
Surgeon factors			
Less experienced			
Recurrent prolapse	个 LVS	2.7-11.9(<u>689</u> , <u>690</u>)	GoE C
Complications	No evidence		
HVS vs LVS			
Recurrent prolapse	No evidence		
Complications	↑LVS	RR 1.4 to 2.4(<u>655</u> , <u>693</u> , <u>694</u>)	GoE B
Perioperative Physio	Not protective		GoE A

POP surgery & complications

Prolapse surgery Complications				
•	Vaginal mesh repairs have a higher rate of complications than native tissue repairs	А		
	Concerning vaginal surgery			
•	If a synthetic mesh is utilised it is recommended that it be macroporous monofilament polypropylene and hysterectomy avoided	В		
•	Bowel preparation prior to surgery is not recommended	В		
•	It is recommended to avoid excessive excision of vaginal skin removal	С		
	Concerning sacrocolpopexy			
•	A macroporous monofilament polypropylene mesh recommended	В		
•	Concomitant total hysterectomy not recommended	В		
•	Laparoscopy preferred approach	В		
•	Delayed absorbable sutures preferenced for securing mesh to the vaginal	С		
•	Closure peritoneum recommended (Delphi)	С		
	Expert Opinion Recommendations			
•	Cessation smoking pre-operatively	С		
•	Comply with prevention of nosocomial infections	С		
•	Antibiotic and thromboembolic prophylaxis	С		
•	Treat UTIs preoperatively	С		

Further research required POP surgery

Management of Uterine prolapse hysterectomy versus hysteropexy Abdominal versus vaginal hysteropexy safety & efficacy sacral colpopexy in uterine prolapse

