Aims of course/workshop

Aims and Objectives:
- Current concepts relating to the neurological control of the bladder and the pelvic floor.

- Urinary and pelvic floor symptoms in patients with cerebral lesions, multiple sclerosis, Parkinson's disease, spinal cord injury and cauda equina

- Urinary and pelvic floor symptoms in bladder pain syndrome/IC and chronic pelvic pain syndromes (neurological basis of disease).

- Investigating neurogenic bladder and pelvic floor dysfunction

- Innovative therapies in treating neurogenic bladder and pelvic floor disorders: Indications and limitations of botulinum toxin

- Innovative therapies in treating neurogenic bladder and pelvic floor disorders: Indications and limitations of neuromodulation

Educational Objectives

This workshop will provide a fresh approach to understanding the neurological basis of bladder and pelvic floor conditions encountered in urogynaecology and urology.

All the speakers have worked extensively in this field and have published widely on the subject matter. Some knowledge of the neurological causes of bladder and pelvic floor dysfunction is essential for the general urogynaecologist and urologist. Patients with neurological disease are referred to both sets of clinicians for advice regarding their bladder and pelvic floor management. It is important to have an understanding of the nature of their neurology, especially when planning medical or surgical management. In addition, clinicians need to know what may be the presenting uro-genital symptoms of a patient with a neurological condition, and the minimal neurological examination necessary for recognising an underlying neurological problem.
The areas covered in this workshop will help clinicians understand the neurological patient with bladder and pelvic floor dysfunction better. The speakers will discuss patient assessment, investigations and provide algorithms for managing this group of complex patients.
Introduction
The pelvic floor is a highly complex structure made up of skeletal and striated muscle, support and suspensory ligaments, fascial coverings and an intricate neural network. Its dual role is to provide support for the pelvic viscera (bladder, bowel and uterus) and maintain functional integrity of these organs. In order to maintain good pelvic floor function, this elaborate system must work in a highly integrated manner. When this system is damaged, either directly or as a consequence of an underlying neurological condition, pelvic floor failure ensues along with organ dysfunction.

The aetiology is inevitably multi-factorial, and seldom as a consequence of a single aetiological factor. It can affect one or all three compartments of the pelvic floor, often resulting in prolapse and functional disturbance of the bladder (urinary incontinence and voiding dysfunction), rectum (faecal incontinence), vagina and/or uterus (sexual dysfunction). This compartmentalisation of the pelvic floor has resulted in the partitioning of patients into urology, gynaecology, colo-rectal surgery or neurology, depending on the patients presenting symptoms. In complete pelvic floor failure, all three compartments are inevitably damaged resulting in apical prolapse, with associated organ dysfunction. It is clear that in this state, the patient needs the clinical input of at least two of the three pelvic floor clinical specialities. Whilst the primary clinical aim is to correct the anatomy, it must also be to preserve or restore pelvic floor function. As a consequence, these patients need careful clinical assessment, appropriate investigations, and counselling before embarking on a well-defined management pathway. The latter includes behavioural and lifestyle changes, conservative treatments, pharmacotherapy, minimally invasive surgery, and radical specialised surgery.

It is not surprising that in this complex group of patients, a multidisciplinary approach is not only necessary, but critical, if good clinical care and governance is to be ensured. But it is of significant import that one has a good understanding of the neurology of the pelvis and its organs.

Neural control of uro-genital system
Voluntary control over the uro-genital system is critical to our social existence. Since its peripheral innervation derives from the most distal segments of the spinal cord, integrity of
the long tracts of the central nervous system for physiological function is immediately apparent. In a survey of the site of the underlying neurological disease affecting a sample of patients referred to the department with bladder symptoms, spinal cord involvement of various pathologies was found to be the commonest cause of bladder symptoms. Because of the commonality of innervation shared by the bladder and genital organs, it might be expected that abnormalities of these two systems inevitably occur together. This however is not the case because although the organs share the same root innervation and have common peripheral nerves within the pelvis, each is controlled by its own unique set of central nervous system reflexes.

In this workshop, a brief account of the neurophysiological control of the bladder and pelvic is given initially, followed by a description of the effect that neurological disease at different levels of the nervous system may have and finally the management of those conditions.

The bladder performs only two functions - storage and voiding of urine- and the modern view of the control of these two mutually exclusive activities is that whereas storage is organised within the spinal cord, micturition results from activation by suprapontine influences of a centre in the dorsal tegmentum of the pons, the pontine micturition centre (PMC). In neurological disease, this delicate interaction can be severely disrupted, and manifests as a disorder of voiding or storage depending on the condition such as multiple sclerosis, Parkinson's disease, multiple system atrophy and others. But commonly, it is direct injury to pelvic nerves that can give rise to quite marked bladder and pelvic floor dysfunction.

The peripheral innervation of the pelvic organs can be damaged by extirpative pelvic surgery such as resection of rectal carcinoma, radical prostatectomy, or radical hysterectomy. The dissection necessary for rectal cancer is likely to damage the parasympathetic innervation to the bladder and genitalia, as the pelvic nerves take a medio-lateral course through the pelvis either side of the rectum and the apex of the prostate. The nerves may either be removed together with the fascia which covers the lower rectum or may be damaged by a traction injury as the rectum is mobilized prior to excision.

Urinary incontinence following a radical prostatectomy or a radical hysterectomy which includes the upper part of the vagina, is probably also due to damage to the parasympathetic innervation of the detrusor and in the case of a radical prostatectomy, there may be additional direct damage to the innervation of the striated urethral sphincter
The focus in the literature tends to focus on the effects of neurological disease on the bladder tends, but other pelvic floor effects should not be ignored, such as pelvic organ prolapse, pain syndromes and sexual dysfunction.

Therapies to manage these conditions depend on a multi-disciplinary approach. This workshop will help guide practitioners on how to maximise the therapeutic options for their patients.

Aims and Objectives of the Workshop

- Current concepts relating to the neurological control of the bladder and the pelvic floor.
- Urinary and pelvic floor symptoms in patients with cerebral lesions, multiple sclerosis, Parkinson's disease, spinal cord injury and cauda equine
- Urinary and pelvic floor symptoms in bladder pain syndrome/IC and chronic pelvic pain syndromes (neurological basis of disease).
- Investigating neurogenic bladder and pelvic floor dysfunction
- Innovative therapies in treating neurogenic bladder and pelvic floor disorders: Indications and limitations of botulinum toxin
- Innovative therapies in treating neurogenic bladder and pelvic floor disorders: Indications and limitations of neuromodulation

Neurology of the bladder and the pelvic floor (Assistant Professor Thomas Kessler)

Please insert document by Assistant Professor Thomas Kessler

Bladder and Pelvic Floor Symptoms in the Neurological Patient (Dr Xavier Game)
Neurological dysfunction of the bladder

Xavier Garné
Dept of Urology, Kidney Transplantation and Andrology
University Hospital Rangueil
Toulouse-France

Bladder: Anatomy and function
- Urinary storage: 99%
- Passing urine: 1%

Peripheral innervation

Filling phase

Peripheral innervation

 Voiding phase

Under Brain control

Filling Phase

Peripheral innervation

Voiding phase

Under Brain control
Neurological conditions

Suprapontine lesions
- Overactive bladder syndrome
- Intact neural programs synergy between detrusor and sphincter
- Parkinson disease
- Stroke
- Multiple sclerosis

Spinal cord lesion (Above T10)
- Automatic bladder
- Reflex bladder
- Overactive bladder
- Detrusor Sphincter Dyssynergia
- SCI patients
- Multiple sclerosis
- Myelitis...

Lower cord lesion (below T10)
- Intact sympathetic innervation to internal sphincter
- Variable integrity of neural programs: less dyssynergia
 - Hesitancy, low stream, incomplete voiding

Autonomous bladder
- Lesion of conus or cauda equina
- No voluntary or reflex control
- Tumours, spina bifida, necrotizing myelitis, trauma, cauda equina syndrome, neuropathy

And the bladder wall

Change in nerve fibers distribution
- In health
 - Aα afferents
 - Efferents
Neurogenic Basis of Bladder Pain Syndrome and Interstitial Cystitis (Sohier Elneil)

Bladder pain syndrome (BPS) is a debilitating chronic disease characterized by bladder pain that increases with bladder filling, and is accompanied by symptoms of increased daytime and night time frequency and urgency in the absence of proven urinary infection or other obvious underlying condition [1]. The extreme of these complex symptoms of bladder dysfunction is interstitial cystitis (IC). Epidemiological surveys in USA report that between 700,000 and 1,000,000 people, mainly women, are suffering from the condition, with an estimated prevalence between 30 and 67 per 100,000 population [2] [3]. It is known to have a detrimental impact on patients’ quality of life. No data exist so far on the frequency of interstitial cystitis in the United Kingdom, and large-scale studies in Finland and the Netherlands have reported a much lower frequency than in the USA with prevalence rates of 18.1 and 16 per 100,000 population [4] [5]. A questionnaire-based survey of the Interstitial Cystitis Support Group in the UK recorded frequency in 92% of patients, nocturia in 87%, urgency in 84%, bladder pain in 63% and urethral pain in 63%. Forty-seven per cent of
participants reported suffering from moderate to severe depression and in 67.3% the impact of LUTS on everyday life was considerable [6].

The aetiology of BPS/IC remains unknown. A variety of factors have been implicated, including inflammation, autoimmune disorders, allergy, viral and/or bacterial subclinical infections, neurogenic inflammation, and urothelial dysfunction.

Increased urothelial permeability has been strongly implicated in the pathophysiology of IC. A significantly lower proliferation rate of urothelial cells was found in bladders of IC patients compared to control bladders [7]; an antiproliferative factor (APF) made by urothelial cells was detected in the urine of IC patients [8]. In a multivariable analysis of the predictive power of histopathology features for urinary symptoms in IC, denudation of the bladder mucosa from urothelium was significantly associated with pain and nocturia [9]. In relevance, bladder pain upon instillation of KCl is thought to be indicative of a permeable urothelium, through which K+ leak depolarises bladder afferents; a positive KCL test has been suggested amongst the diagnostic criteria for IC [10]. Afferent neuromodulation through an abnormally permeable urothelium has been proposed as the possible mechanism by which high concentrations of intravesical KCL could almost abolish afferent neural activity in cats with feline IC [11]. Finally, inducible nitric oxide synthase (iNOS) and nitric oxide (NO) levels were significantly increased in feline IC bladders [12]. Luminal NO production was found to be decreased only in IC patients that responded to treatment, and changes in NO levels correlated well with changes in symptom/bother score [13].

There is increasing evidence for a role of abnormal afferent activity in the pathophysiology of IC, via increased expression of sensory receptors and/or release of neuropeptides and neurotransmitters associated with the sensation of bladder fullness and perception of visceral pain. Bladder afferents in cats with feline IC showed increased firing in response to various levels of intravesical pressure compared to normal cats, suggesting increased mechanoreceptor sensitivity in this condition [11]. Stretch-evoked ATP release from urothelial cells is increased in patients with IC compared to controls [14]. In addition, P2X3 expression was upregulated in the urothelium of IC patients [15] and stretch of cultured urothelial cells from IC bladders resulted in higher P2X3 expression compared to stretch of ‘normal’ cells [16]. Increased numbers of SP-immunoreactive fibres have been found in the suburothelium of IC patients in comparison to controls [17], while SP receptor-encoding mRNA was found to be increased within the vascular endothelium of IC bladders [18].
Women with IC have increased mean urine concentration of SP compared to age-matched controls, which correlated significantly with urinary frequency and urgency in those treated with dimethylsulfoxide (DMSO) [19]. Also, decrease in urine SP levels after epidural anaesthesia was accompanied by successful pain control in IC patients [20]. In support of neuroplastic changes in IC bladders, NGF immunoassay levels were found to be increased in such bladders, with increased NGF immunoreactivity localising in the bladder urothelium, but not in the muscular component of the biopsies [21]. Furthermore, significant attenuation of pain and urgency in IC patients treated with intravesical instillation of alkalised lidocaine, which is known to have an inhibitory effect on neurite regeneration and synapse formation [22], suggested modulation of bladder afferents and provided further evidence for a role of the afferents in the pathophysiology of IC [23].

The condition is also characterised by the presence of long-standing inflammation in the bladder. Bladder mastocytosis and increased activation of mast cells have been associated with the pathophysiology of IC, and increased urinary levels of mast cell mediators have been found in these patients [24]. Mast cells are often in close apposition to nerve fibres and can be activated by SP and carbachol [25], suggesting a neuro-immunomodulatory role. Activation of bladder mast cells can be potentiated by estradiol [25]. Bladder mast cells were shown to express high-affinity oestrogen receptors and a higher number of such cells were present in patients with IC compared with controls [26].

Treatment of BPS

Despite the use of several oral and local agents, no effective treatment has been found to date. A questionnaire-based survey in the UK showed that antidepressants, antibiotics, anti-inflammatory drugs, antihistamines, anticholinergics, anticonvulsants, cimetidine, sodium citrate, sodium bicarbonate, DMSO and pentosan polysulphate are commonly used non-invasive treatments in this country, while 4.9% of patients asked had undergone urinary diversion or cystoplasty [6]. Intravesical instillation of a solution combining heparin and alkalised lidocaine provided immediate relief of pain in 75% (lidocaine 1%) and 94% (lidocaine 2%) of patients treated, but this can only last for 2 weeks with repeat treatment. Based on findings suggesting an anti-nociceptive effect of BoNT/A through modulation of sensory pathways that may also be involved in the pathophysiology of BPS/IC, it was thought highly likely that patients with BPS/IC would benefit from bladder injections of BoNT/A and a single study to date has examined the effect of BoNT/A on IC; Smith et al injected suburothelially up to 200 units Botox® or equivalent Dysport® in 13 patients, and reported significant improvements in symptom scores in 9 (70%) of them [27]. Frequency,
nocturia, maximum cystometric capacity and cystometric volume at first desire to void improved significantly, while pain decreased by a mean 79%. No systemic side effects or cases of urinary retention were reported, and symptomatic improvement lasted for a mean 3.7 (range 1-8) months.

Role of Botulinum Toxin A

The mechanism of action of Botulinum neurotoxin type A (BoNT/A) has been extensively investigated in striated muscle, where it is known to act by prolonged selective blockade of acetylcholine (ACh) exocytosis after its intracellular proteolytic cleavage of the synaptosome-associated protein SNAP-25. Recovery of neurotransmission occurs eventually as functional axonal sprouts emerge from the spared nerve terminals. These then regress gradually, whilst the original terminals recover their function [28] [29] [30] [31] [32] [33] [34].

Over the past 9 years, the use of BoNT/A (Botox®, Dysport®) has been pioneered in the treatment of lower urinary tract symptoms (LUTS) such as urgency, frequency and urgency incontinence due to intractable neurogenic (NDO) or idiopathic (IDO) overactivity of the detrusor smooth muscle of the bladder. BoNT/A injected into the bladder wall of such patients has produced exceptional improvements in both LUTS and urodynamic parameters, with response rates approaching 95-100% in some reports [35] [36]. The duration of clinical improvement is 6-11 months [37] [38] and repeat treatments appear to have sustained effects [38]. In an on-going study we have so far used intradetrusor injections of Botox® in 100 patients, 63 with NDO and 37 with IDO. Of those with available follow-up data, all but one have responded to the treatment, group analysis showing significant improvements in mean maximum cystometric capacity, maximum detrusor pressure during filling cystometry, 24-hour frequency, number of incontinence episodes per 24 hours and number of voids associated with urgency per 24 hours [36]. Symptomatic improvement is an early feature of the patients’ clinical response occurring within the first week [39]. Amelioration of symptoms is accompanied by significant improvement in patients’ quality of life [39] [40].

Intradetrusor BoNT/A, however, remains an unlicensed treatment and its mode of action in the human bladder is largely unknown. Although clinical and urodynamic results suggest a long-lasting, but reversible ‘paralysis’ of the detrusor due to parasympathetic motor deficiency similar to the mechanism of action in striated muscle, biopsies from the detrusor of treated NDO patients showed no significant ultrastructural nerve changes (degeneration or sprouting) [41]. Furthermore, an immunohistochemical study of flexible cystoscopic biopsies from patients treated in our department showed that suburothelial nerve density measured by immunoreactivity to the pan-neuronal marker PGP9.5 (protein gene product
remained unchanged after treatment. In the same biopsies, a significant post-BoNT/A decrease in the levels of the capsaicin receptor TRPV1 and the purinergic receptor P2X3 in suburothelial nerves suggested an effect of BoNT/A on bladder afferent pathways [42]. Both receptors have been shown to be involved in normal bladder mechano-sensation in animal studies; TRPV1-knockout mice display changes in voluntary micturition pattern as well as increased frequency of non-voiding contractions on urodynamics, increased cystometric capacity and inefficient voiding [43]. P2X3-deficient mice exhibit increased cystometric capacity and decreased frequency of voiding [44][45]. TRPV1 activation is required for distension-evoked release of ATP and NO from the urothelium [43]; urothelially-released ATP is believed to act as a sensory mediator for the degree of bladder distension, via its action at suburothelial P2X3-receptors [46][47]. Of relevance here, BoNT/A significantly inhibited the distension-evoked release of ATP from the bladder urothelium in rats with chronic spinal cord injury [48].

The presence of TRPV1 and NOS has been also shown in the recently described human bladder interstitial cells [49], which are extensively linked by connexin 43-containing gap junctions in the suburothelium [50]. These cells bear several morphological characteristics of the myofibroblasts that have been recently identified in the human bladder suburothelium, lying in close proximity to vesicle-packed unmyelinated nerve endings [51]. It was proposed that the myofibroblasts/interstitial cells and their closely associated axonal varicosities could collectively function as a bladder stretch receptor. Electrophysiological experiments have shown that guinea pig suburothelial 'myofibroblasts' may respond to ATP by an increase in intracellular Ca2+ and generation of an inward current in a manner similar to the activation of ATP-gated P2Y receptors [52], whereas substance P (SP) activated high affinity receptors in interstitial cells in the guinea pig small intestine [53].

Importantly though, both TRPV1 and P2X3 are also known to be involved in pain pathways, and TRPV1- and P2X3-deficient mice demonstrated impaired nociception [54][44]. A peripheral anti-nociceptive effect of BoNT/A has been demonstrated in animal models of formalin-induced inflammatory pain via inhibition of the release of the neurotransmitter glutamate. BoNT/A was shown to specifically affect the second phase of neurogenic inflammation, which is known to be mediated by the sensory neuropeptides SP and calcitonin gene related peptide (CGRP) [55]. An effect of BoNT/A on the release of SP was found in cultured dorsal root ganglion (DRG) cells following cleavage of SNAP-25 [56], while intravesical instillation of BoNT/A in a rat model of bladder inflammation resulted in inhibition of mucosal release of CGRP and afferently mediated bladder overactivity [57]. Further evidence for modulation of nociceptive afferent pathways by BoNT/A was provided when a BoNT/A-conjugate was shown to induce inhibition of SNARE-dependent, presumably
vesicular, release of SP and glutamate from rat DRG cells with significant attenuation of the sensory transmission from C-fibre afferents through the spinal cord [58]. A dose-dependent reduction in the expression of Fos in the dorsal horn of the formalin-challenged rat model [55] suggested that the initial peripheral desensitization induced by BoNT/A is followed by a central one, through reduced nociceptive input to the spinal cord [59].

Indications and Limitations of Botulinum Toxin in Neurogenic Bladder and Pelvic Floor Disorders (Rizwan Hamid)

Botulinum Toxin therapy in neuropathic bladder

Rizwan Hamid FRCS (Eng)
Consultant Urological Surgeon
National Hospital Neurology & Neurosurgery, UCN
London Spinal Injury Unit, Stanmore, NW9 5EH

Overactive Bladder

OAB defined based on symptoms (ICS 2002)

- Urgency, with or without urge incontinence, usually with frequency and nocturia
- In the absence of pathologic or metabolic conditions that might explain these symptoms
- These symptoms with any neurologic diagnosis - NES

Treatment options

- Behavioural therapy
- Antimuscarinic medications
- Sacral reinnervation
- Botulinum toxin therapy
- Augmentation cystoplasty

Botulinum toxin therapy

- What is botulinum toxin
- Who introduced it / when
- How it works
- Technique of procedure
- Efficacy
- Duration
- GQL
- Safety profile
- Future
The development of BOTOX® for therapeutic use

Mechanism of action

- A neurotoxin
- A serine protease
- Action upon cholinergic nerves
- Prevents acetylcholine release from nerve endings
- Blocks acetylcholine release to prevent muscle contraction

BTX has high affinity for the Neuromuscular Junction

Local, Temporary, Muscle Relaxation

Botulinum Toxin A

Botulinum Toxin: Unique Molecular Structure

- Non-toxic accessory protein
- Non-toxic neurotoxin light chain
- Major neurotoxin heavy chain
- Motor neuron inhibition
- Release of light chain
- Cleavage of SNAP-25 and blockage of ACh release

Proposed Mechanism for the Efficacy of Injected Botulinum Toxin in the Treatment of Human Detrusor Overactivity

Available at www.emedicine.com
Publisher: www.emedicine.com

Dr. Theodore A. Youm, MD
Assistant Professor of Urology
Department of Urology, University of Florida, Gainesville, FL
Botulinum toxin A

- Popularised by Schuch
- Unlicensed indication
- 2nd line (refractory to medications)
- Temporary (ave 8-9 months)
- Repeated injections are effective
- Need for self catheterization
- Local / GA
- Number / site / dose not well defined

Points of Technique

A minimally invasive technique for outpatient local anaesthetic administration of intradetrusor botulinum toxin in intractable detrusor overactivity

Surgical Procedure

Technique of injection

Via flexible cystoscope

- Dose
 - 200U
- Date of injections
 - About the biopsy
- Number of injections
 - Usually number of biopsies x 3

Botox injection technique
Histological Changes in the Urothelium and Suburothelium of Human Overactive Bladder following Intradetrusor Injections of Botulinum Neurotoxin Type A for the Treatment of Neurogenic or Mioasphic Detrusor Overactivity

Conclusion

- No Fibrosis
- No Hyperplasia
- No Dysplasia
-わからない changes after BoNT/A
Indications and Limitations of Neuromodulation in Neurogenic Bladder (Alex Digesu)

The pelvic floor plays an important role in the urine storage, voiding, urine continence, anal continence to gas and feces, defecation and sexual activity. All these pelvic organ functions are controlled by nervous pathways that involve neurons in the motor cortex of the brain, spinal cord and peripheral ganglia.

In neurological diseases the alteration of these nervous pathways are responsible of the lack of coordination between the urinary bladder, urethra, rectum and pelvic floor muscle (PFM) leading to pelvic floor dysfunction (PFD).

Symptoms commonly reported by patients with neurological diseases include urinary incontinence (37–70%), constipation (29–67%), and in men erectile dysfunction (40–60%). This indicates that the central nervous system is involved both in motor and autonomic pelvic functions.

The pathogenesis of PFD in patients with neurological lesions is an active area of research. However, it is still unknown whether PFD are caused by lesions of the central nervous system or peripheral nerves.

It has also been demonstrated that the prevalence of bladder and bowel dysfunction increased with the severity of the illness. Sakakibara et al., showed that the majority of patients with Parkinson’s disease experienced pelvic organ dysfunction onset after the appearance of motor disorder.

The most striking feature of bladder dysfunction in the Parkinson’s disease patients is filling phase disorder and urinary incontinence. It has been suggested that in those patients, the
decrease in central dopaminergic neurons (D1), which regulate the pontine micturition center, is responsible of detrusor hyperreflexia.

Voiding phase disorder is another feature seen in Parkinson’s disease patients due to detrusor-sphincter dyssynergia. This disorder may be caused by peripheral α-adrenergic stimulation by anti-parkinsonian drugs such as levodopa or its metabolites.

However, the effect of dopaminergic drugs on parkinsonian bladder shows conflicting results. In some reports, the use of apomorphine, levodopa, pergolide produced a lessening of detrusor hyperreflexia whereas in others, it provided amelioration of voiding difficulty.

The most common bowel dysfunction in Parkinson’s disease patients are constipation and prolonged colorectal transit time, difficulty in expulsion and paradoxical contraction of the puborectal muscle. These symptoms probably, reflect abnormalities in the colon and anorectum. Experimental study findings showed that a decreased intestinal motility occurs when there is a reduction in the number of central dopaminergic neurons, which modulate the pontine defecation centre. Other possible causes are peripheral nerve lesions or overextension injury secondary to faecal impaction.

Sexual dysfunction is also very common in both men and women with Parkinson’s disease. However, the mechanism of sexual dysfunction is less clear than that of bladder and bowel dysfunction. Whereas motor disorder, pain, and depression may affect sexual function, there is little evidence that autonomic dysfunction contributes to sexual dysfunction in those patients. Experimental studies have shown that the key area for sexual function is in the hypothalamus and particularly the medial preoptic area and paraventricular nucleus.

People with multiple sclerosis experience high levels of sexual dysfunction which are mainly represented by hypoactive sexual behaviour, lack of sexual interest, decreased libido, often with problems in orgasmic capacity. Fatigue, spasticity, muscular weakness, bladder problems, pain, cognitive and behavioural changes also has an important impact on sexual dysfunction.

Different neurophysiological tests have been proposed in order to assess the direct and reflex responses to the pelvic floor. These include: the pudendoanal reflex, the bulbocavernosus reflex, the pudendal nerve terminal motor latency (PNTML). The cutaneoanal reflex and other somatosomatic and viscero-somatic reflexes have limited
usefulness in pelvic floor investigations due to a large variability in the latency of these responses.

The more commonly used electrophysiological investigations to investigate the integrity of the sacral reflex arc supplying pelvic floor muscle function are the PNTML and the sacral reflexes. These last tests can be elicited by mechanical, electrical or magnetic stimulation and involve the whole reflex arc, but do not differentiate the afferent and efferent branch of the reflex.

The PNTML only explores the more distal portion of pudendal nerve, not looking at the portion of the nerve proximal to the site of the stimulation induced by the St. Mark’s electrode.

More recently, Fowler et al. described direct and reflex responses after S3 root stimulation, introducing wire electrode close to S3 sacral root. Direct motor and reflex responses from the external anal sphincter (EAS) by S3 electrical stimulation can provide valuable information on the functional integrity of the sacral reflex pathway, but differently from the pudendoanal and bulbo cavernousus reflexes, can distinguish the efferent limb of the reflex pathway from the whole arc.

EAS responses during S3 percutaneous electrical stimulation are easy to perform, not invasive neither too painful thus representing a useful electrophysiological technique for the selection of candidates to sacral nerve modulation (SNM). The EAS responses following the stimulation of the same S3 fibres used for SNM, contribute to evaluate the functional integrity of the efferent branch of pudendal nerve and to exclude lesions at the sacral S2-S4 central cord levels.

Peripheral Neuromodulation in Pelvic Floor Disorders (Dr Sohier Elneil)

Electrical neuromodulation of the lower urinary tract began over a century ago, but it was the pioneering work of Tanagho and Schmidt at the University of California in the late 1980s that demonstrated electrical activation of efferent fibres to the striated urethral sphincter inhibited detrusor contractions [60]. Stimulation of the third sacral root (S3) has been shown to be effective in stimulating the urethral sphincter [61]. A large multicentre (Medtronic MDT-103 - USA, Canada and Europe) prospective randomised clinical trial was set up to look at efficacy and safety of chronic neuromodulation to the S3 nerve. Results of this study led to approval by the Food and Drugs Administration in October 1997. Over 25,000 neuromodulators
(Interstim® and Interstim II®, Medtronic Inc, Minnesota, Minneapolis, USA) have so far been implanted for approved urinary indications, including functional non-neurogenic urinary retention or chronic urinary retention and voiding dysfunction secondary to urethral sphincter overactivity (Fowler’s syndrome) [62, 63]. Indeed, SNM has been shown to be the only effective therapy in women with these conditions.

Mechanism of Action in Urinary Retention

Sacral neuromodulation restores voiding in women with chronic urinary retention [64], probably by resetting brainstem function [65]. SNM was first described as a treatment for urinary retention in the mid-1990s. At the time, SNM was introduced for the management of bladder dysfunction, paradoxically both intractable incontinence and retention. The first stage of SNM was an initial test procedure, known as a percutaneous nerve evaluation test (PNE) which if found to be positive and restore voiding ability, was followed by the implantation of a permanent sacral electrode. Success rates for women with retention for this method were reported at 40 – 50% for the PNE, with approximately 60% voiding to completion with formal implantation [66], [67]. In the Department of Uro-neurology at the National Hospital for Neurology and Neurosurgery in London, the author’s experience has been comparable, with two thirds of patients continuing to void without need for catheterization at a follow up of 5 years [68].

A retrospective study of 247 women referred to our Department, with urinary retention over a 4-year period showed that Fowler’s syndrome is the commonest diagnosis although this only accounts for 58%. In 32% no diagnosis could be made but in 2% there was a history of chronic opiate ingestion [69]. In 3% of the patients there appeared to be a relationship with chronic idiopathic pseudo-obstruction (CIPO), a rare disorder characterised by severe and chronic constipation without any demonstrable anatomical or mechanical lesion but thought to be due to a visceral neuropathy or myopathy (in infants or children) [70]. In men, there is an uncommon condition where painless urinary retention is present but it is not associated with constipation, and sexual function is preserved, but in whom extensive investigation fails to reveal any underlying abnormality. It has been speculated that this disorder is due to some abnormality of the intrinsic afferent innervation, possibly loss of the “myofibroblast” or interstitial cell, thought to be an integral part of the bladder stretch sensing mechanism [71] although no proof of that exists as yet. Presumably, this same condition makes up a proportion of the women with unexplained urinary retention.

Though the mechanism of action of SNM remains indeterminate, there are various theories based on careful observations. Two components have been identified (i) activation of
efferent fibres to the urethral sphincter with negative feedback to the bladder (pro-continence reflex) and (ii) activation of sacral spinal afferents resulting in inhibitory reflex efferent activity to the bladder. Reflex pathways at the spinal cord and supra spinal levels are thought to be modulated to achieve these effects [72, 73]. The prolonged beneficial effects of the stimulator, after it is switched off, support this observation. In urinary retention, SNM is postulated to interfere with the inhibitory afferent activity arising from the urinary sphincter and thus restoring the sensation of bladder filling and the ability to void [63].

At a central level, decreases in regional cerebral blood flow measured by PET scanning was demonstrated in the cingulate gyrus, orbitofrontal cortex, midbrain and adjacent midline thalamus in chronically implanted patients with urge incontinence [72]. SNM appears to restore activity associated with brainstem auto regulation and attenuation of cingulate activity [73, 74], critical to bladder function.

Historically, the management of urinary incontinence and retention, with SNM has classically been with successful pre-test stage using percutaneous nerve evaluation before permanent implantation. Success rates with this method have been reported at 40 – 50% [67, 75] for the PNE and approximately 60% voided to completion with formal implant and a further 14% reported significant improvement at 18 months our results show that a two third of patients continue to void without catheterization at a mean follow up of 5 years [76] and 78% at a mean follow-up of 10 years [77]. The relatively low success rate of the PNE and single stage implant has led to the development of the staged implant, whereby the permanent ‘tined’ lead is inserted and a prolonged external stimulation period is assessed [78], if successful then the permanent IPG is implanted. Early reported results with this technique show 80% success rates [78, 79]. A pilot prospective randomised controlled trial comparing the 1-stage to the 2-staged shows a higher success rate for the staged operation. [80].

Results from our department are in line with these reports.

Our Department has previously reported on the traditional implantation technique that was used first at our unit using a one-stage procedure [62], preceded by a PNE. This took place until August 2004, until the author took over the programme for the hospital. The PNE was a way of evaluating the success of the final implant without the cost and trauma of the final implant and surgery respectively. The testing wire would remain in place for up to 7 days and if patients reported at least a 50% improvement in their symptoms and their bladder diary confirmed this, they would go on to have a permanent lead and stimulator.

The disadvantage of the PNE was the rather variable success rate of 24-75% [67, 78, 80-85]. Although these patients were labelled as non-responders, the real reason for a
The proportion was dislodgement of the testing wire from the original optimum position close to the sacral branches of the pelvic plexus or pudendal nerve. Sacral radiographs often demonstrated that the wire had moved or was out of the foramen completely.

In previous reports of this technique there were several drawbacks noted, as up to 40% of patients who responded to the temporary PNE, did not void on insertion of the permanent electrode. A possible reason for this is that the site of permanent electrode implantation may have differed from that of the “successful” PNE electrode [86]. Conversely the PNE temporary electrode may not be optimally placed leading to failure and patients not proceeding to permanent implantation [82]. In 1997, Janknegt et al., suggested the implantation of the permanent standard electrode in patients with a strong suggestive history, in whom the PNE failed [82]. In 2000 the two-stage percutaneous minimally invasive technique came into its own with the emergence of the self-securing tined electrode [67, 82]. This has a longer “test phase” to evaluate the procedure. Early data suggested that this has a higher success rate than the one-stage procedure of up to 80% [79, 80] and this has been our adopted method since 2004.

Using a percutaneous technique, fluoroscopic guidance, and local or general anaesthesia a permanent electrode is implanted as the first stage, and connected to a temporary external battery. If the first stage fails, the electrode can be removed. It is the authors’ belief that the two-stage technique overcomes problems with PNE lead migration. It helps clinicians decide which patients should go on to have a permanent battery. The average battery life with Interstim® and Interstim II® is around 8 and 5 years, respectively, but this varies with the settings used [87].

SNM is not without its complications and need for revision surgery. Therefore, it is important that patients are counselled regarding failure of the procedure (25%), the significant revision rate (30-50%), and the risk of box site pain, sciatica and nerve injury (very low). At 10 year follow-up at the National Hospital for Neurology and Neurosurgery, 78% of the patients who previously had significant impairment or inability to void, were able to void [69, 77]. Despite proven efficacy the procedure is not without a significant complication rate both at our and other centres using the same technique [62, 88]. This includes lead migration, pain at the Implantable Pulse Generator (IPG) site, leg pain, infection and failure of the device over time. This finding is confirmed by other studies which reported an incidence of 11% in lead migration [15] and 20% in lead breakages[86, 87]. Siegel et al. summarised their adverse events in the 219 patients who underwent implantation of the Interstim® IPG and the most common complaint was pain at the IPG site in 15.3% of patients [85]. The surgical revision
rate was 33%. Everaert et al. reported a 34% device related pain rate, with a 23% surgical revision rate [89]. Grunewald et al. reported a revision rate of 30% over 4 years. Lead migration was noted as 5.4% and IPG site pain as 8.1% [90]. Recently authors have reported much higher long term revision rates with 54% [62], 48.3% [87] and 43.9% [91] excluding normal battery changes. Similar results were obtained in a worldwide SNM clinical study in voiding dysfunction, carried out by Van Kerrebrock (2007) and colleagues [92].

The most important determinant of success, in women with chronic urinary retention or other pelvic floor symptoms (including pelvic pain syndromes, sexual dysfunction and bowel dysfunction) is the careful selection of the patient. This includes a urological and gynaecological history, pelvic examination to rule out surgical correctable causes and urine assessment to rule out infection and haematuria. We advocate the use of frequency-volume charts, urodynamic evaluation where indicated, post void residuals if they are able to void at all and quality of life questionnaires to qualify the degree of improvement before and after the procedure.

In the last decade there has been a plethora of innovative neuromodulation devices for treatment of lower urinary tract symptoms and pelvic floor dysfunction, though sacral neuromodulation remains the most widely used form of peripheral neuromodulation. In this workshop, a review of the role of pudendal neuromodulation, percutaneous tibial nerve stimulation and sacral dermal neuromodulation devices will also be considered. Their place in an algorithm of bladder and pelvic floor management will be devised.

Take Home Message
- Neurological basis of bladder and pelvic floor dysfunction is essential to all practitioners
- In neurological patients, practitioners should investigate all aspects of bladder and pelvic floor dysfunction
- Different therapeutic options should be made available and discussed with all patients

References

Neurology of the bladder and pelvic floor

Ass. Prof. Thomas M. Kessler, MD, FEBU
Neuro-Urology, Spinal Cord Injury Center,
Balgrist University Hospital,
University of Zürich, Zürich

Social impact of micturition

„Manneken Pis“ (Brussels)

Multilevel process

- cerebral
- spinal
- peripheral
Afferent and efferent nerve fibers

sympathetic parasympathetic somatic
Suburothelium: „gap junction“ protein connexin 43 ↑
Roosen A et al., Eur Urol 2009

Suburothelium: „adherens junction“ protein cadherin 11 ↑
Roosen A et al., J Urol 2009

Foerster CJ et al., Nat Rev Neurosci 2008
Conclusions

Complex multilevel process
- Interaction urothelium, suburothelium and detrusor
- Spinal interneuronal pathways
- Specific cortical and subcortical regions
29.05.2011

Pudendal nerve
Pelvic plexus
Afferents
Efferents
Onuf's nucleus
Parasympathetic nuclei S2-4
Sympathetic nuclei Th10-L2
Pontine storage & micturition center
Hypogastric nerve
Parasympathetic fibers (ACh m)
Detrusor + urethral smooth muscles -
Somatic fibers (ACh n)
External urethral sphincter +
Suprapontine centers
Sympathetic fibers (NA)
Bladder neck, proximal urethra +
Detrusor -
Parasympathetic system -