Dynamic rehabilitative ultrasound for pelvic floor disorders –
Introduction in techniques and hands-on-workshop
W37, 30 August 2011 14:00 - 17:00

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Topic</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>14:10</td>
<td>Welcome and Objectives</td>
<td>• Baerbel Junginger</td>
</tr>
<tr>
<td>14:10</td>
<td>14:25</td>
<td>Scientific background of pelvic floor motor control</td>
<td>• Kaven Baessler</td>
</tr>
<tr>
<td>14:25</td>
<td>14:55</td>
<td>Development of an individual and specific pelvic floor rehabilitation program</td>
<td>• Baerbel Junginger</td>
</tr>
<tr>
<td>14:55</td>
<td>15:10</td>
<td>Different ultrasound applications to assess and treat pelvic floor dysfunction</td>
<td>• Kaven Baessler</td>
</tr>
<tr>
<td>15:10</td>
<td>15:25</td>
<td>Hands-on: Abdominal muscle ultrasound to assess the transversus abdominis and external oblique muscles</td>
<td>All</td>
</tr>
<tr>
<td>15:25</td>
<td>15:30</td>
<td>Questions</td>
<td>All</td>
</tr>
<tr>
<td>15:30</td>
<td>16:00</td>
<td>Break</td>
<td>None</td>
</tr>
<tr>
<td>16:00</td>
<td>16:15</td>
<td>Hands-on: Supra-pubic (abdominal) ultrasound to assess the bladder and pelvic floor movements</td>
<td>All</td>
</tr>
<tr>
<td>16:15</td>
<td>16:35</td>
<td>Hands-on: Perineal (translabial) ultrasound to evaluate the bladder neck and puborectalis muscle</td>
<td>All</td>
</tr>
<tr>
<td>16:35</td>
<td>16:40</td>
<td>Questions</td>
<td>All</td>
</tr>
<tr>
<td>16:40</td>
<td>16:55</td>
<td>Results of a specific rehabilitation program employing ultrasound as biofeedback tool</td>
<td>• Baerbel Junginger</td>
</tr>
<tr>
<td>16:55</td>
<td>17:00</td>
<td>Discussion</td>
<td>All</td>
</tr>
</tbody>
</table>

Aims of course/workshop

Ultrasound is a promising instrument for pelvic floor rehabilitation for physiotherapists and other health care professionals treating women with pelvic floor disorders. Dynamic rehabilitative ultrasound is used to image function and dysfunction of musculo-skeletal and pelvic floor disorders. The aim is to directly evaluate the effect of muscle contraction and relaxation, e.g. bladder neck elevation and descent. Workshop participants will practice amongst each other abdominal muscle ultrasound to assess the transversus, external and internal oblique muscles as well as perineal and supra-pubic ultrasound to evaluate the bladder movements during pelvic floor contraction, straining, coughing and other functional tasks.

Educational Objectives

This hands-on-workshop will firstly provide the theoretical background of a specific, bladder neck effective pelvic floor rehabilitation program and then practice the different ultrasound applications amongst each other. Health care professionals will be familiarized with the use of ultrasound as a method for pelvic floor assessment and biofeedback. Ultrasound is the ideal tool to assess muscle recruitment and teach muscle contraction with visual biofeedback. The results of recent studies employing ultrasound will be reviewed. Influences of different muscle contraction of the abdominal wall and their influence on bladder neck position will be shown using suprapubical and perineal ultrasound imaging. Pelvic floor activity during coughing or straining can easily be assessed and evaluated and integrated into exercises and daily life. Videos and cases will be presented and discussed in an interactive part.
Dynamic rehabilitative ultrasound for pelvic floor disorders

Introduction in techniques and hands-on-workshop

Bärbel Junginger, PT, MT (OMT), cand. MPhil (University of Queensland, Brisbane/Australia)

PD Dr. med. Kaven Baessler
Diploma in Urogynaecology (Royal Australian & New Zealand College of Obstetricians and Gynaecologists)

Charité Universitätsmedizin Berlin
Beckenboden-Zentrum Charité
Campus Benjamin Franklin
Hindenburgdamm 30
12200 Berlin
Germany

baerbel.junginger@charite.de
kaven.baessler@charite.de
1. **Introduction:**
 - Ultrasound is a medium for pelvic floor rehabilitation for physiotherapists and other health care professionals treating women with pelvic floor disorders.
 - Dynamic rehabilitative ultrasound (DRUS) is used to image function and dysfunction of musculoskeletal and pelvic floor disorders.
 - For pelvic floor rehabilitation several muscles are of interest:
 - abdominal muscles: abdominal ultrasound probe
 - pelvic floor muscles: abdominal or endovaginal ultrasound probe

Ultrasound can be used as an instrument for evaluation of physiological and pathophysiological movements of the bladder. It can also be used as a biofeedback instrument, for example via perineal ultrasound, to enhance the understanding of normal pelvic floor function during coughing e.g. The physiological pre-contraction of the pelvic floor can be taught, known as the “Knack”, a pelvic floor contraction that is generated before coughing or sneezing to prevent urinary leakage [1, 2]. The Knack has been confirmed to improve the stability of the bladder neck during coughing. A loss of pre-contraction has been shown in incontinent women during a daily function (rapid arm movement) [3].

In conjunction with abdominal ultrasound, perineal ultrasound is a valuable instrument to assess the synergy of the pelvic floor and deep abdominal muscles. It can be used for pelvic floor re-education especially for retraining of functional tasks that result in urinary leakage in the individual subject [4]. Recent studies have shown that motor learning with selective muscle contraction under US-guidance leads to faster and better outcomes (performance, strength, repeatability). In Van et. Al’ study [5] patients increased their strength within 2 weeks after teaching selective multifidus muscle activation with US. At this early stage an increase in strength is a sign for better coordination and better performance of the exercise because “real” muscle strength cannot occur in such a short time. In the field of PFM and trunk muscle rehabilitation US biofeedback is also commonly used [6-8].

2. **Equipment**
 - Ultrasound machine – simple, no colours or Doppler or 3/D facilities required
 - Abdominal ultrasound probe or (endovaginal ultrasound probe)

3. **Indications of pelvic floor ultrasound**
 - Anatomy and function
 - Pathophysiology
 - Evaluation of pelvic pain
 - Pelvic floor disorder diagnosis
 - Biofeedback –pelvic floor contraction, coughing, straining
4. **Perineal ultrasound: application and normal anatomy and function**

Pelvic floor ultrasound

Normal Anatomy

- Urethra, bladder
- Rectum
- (Vagina)
- Anal sphincter
- Uterus

Perineal ultrasound with normal position of uterus

Perineal or introital ultrasound

Bladder wall thickness

- Normal: <5mm
- 3 measurements >5.5mm: detrusor overactivity

Pelvic floor ultrasound

Anal sphincter

IAS

EAS

Puborectalis
5. Application of introital ultrasound

6. Pelvic floor ultrasound: pathology

- Cystocele, cystourethrocele
- Bladder neck descent, funneling
- Enterocele
- Rectocele
- Anal sphincter defect
- Diverticulum - urethral, vesical
- Urethral and vesical tumors
- Foreign bodies

7. Measurement of bladder neck position
 - For pre-post assessment e.g.
 - Mainly for scientific evaluation

8. Aims of dynamic rehabilitative ultrasound
 - Evaluation of the effect of pelvic floor muscle contraction and relaxation
 - Bladder neck elevation
 - Bladder neck descent.
 - Movement of the puborectalis muscle and rectum
 - To directly evaluate the changes in abdominal muscle thickness and muscle sliding
9. Techniques used in pelvic floor rehabilitation

- Technique of ultrasound application for assessment of transverse, external and internal abdominal oblique muscles

- Perineal (females) and supra-pubic ultrasound (females and males).
 - Evaluation of bladder neck and puborectalis muscle movements.

- Measurements should be performed during pelvic floor contraction/relaxation, straining, coughing and other functional tasks.

10. Findings of normal and pathological pelvic floor function (video examples)

- during pelvic floor contraction
- coughing
- lifting and other activities of daily life

11. Description of a rehabilitation program employing DRUS, palpation and functional teaching:

The main goal is to teach a bladder neck-effective pelvic floor contraction in women with stress and urge incontinence. Bladder neck effective means a cranio-ventral movement with an elevation of the bladder neck which can be maintained during breathing and coughing e.g. The co-activation of the transverse abdominal muscle (TrA) and the elimination of internal and external oblique muscle contraction is of further importance.

Evaluation includes bladder neck elevation, pre-contraction, voluntary pelvic floor contraction at maximal strength and with submaximal effort, hold during breathing and coughing, stabilization of the urethra, hold of bladder neck position during coughing or abdominal manoeuvres and typical physical exercises.

Ultrasound is the method of choice to visualize the bladder neck. Palpation and ultrasound are both employed to teach pelvic floor contractions. Palpation of PFM leads to a better perception and awareness whereas ultrasound shows the patient that the performed contraction is sufficient, insufficient or even not effective. Both, the visual and the tactile biofeedback are utilized to teach how to perform a sufficient and bladder neck effective PFM contraction.

The assessment of the bladder neck elevation seems important given that during typical so-called pelvic floor gymnastic exercises the bladder neck is not necessarily elevated or even supported (Posterpresentation IUGA 2010 Baessler&Junginger).

First comes awareness and subsequently individual dysfunctions of the PFM and the TrA will guide next steps of the program. At the end, functional integration into daily life and the patient’s incontinence patterns is instructed. This is considered essential to guarantee life long implementation of the pelvic floor instead of life long training and exercises. It also serves the autonomy of the patient.
12. Case reports and interactive discussion about training strategies, modalities and experiences:

Case 1: Woman with stress urinary incontinence (SUI): descent of the bladder base during coughing on ultrasound.

Slight anterior vaginal wall prolapse
Palpation Oxford: 2, problems with endurance, no problems with fast contractions, breathing during contraction but loss of contraction
Bother scale: greatly bothered of SUI - Australian pelvic floor questionnaire/ German version [9]
Previous physiotherapy: 12 supervised group training sessions

Therapy:

Case 2: Woman with OAB and SUI showing bad coordination and co-contraction of all abdominal muscles during PFM contraction.

Palpation Oxford: 4, no problem with endurance, no problem with fast contractions, no breathing during contraction
Bother scale: moderately bothered of SUI - Australian pelvic floor questionnaire/ German version [9]
No supervised previous physiotherapy

Therapy:

Case 3: Woman with no contraction at all, no visible effect during contraction, no perception, no PF awareness.

Palpation Oxford: 0
Bother scale: moderately bothered of SUI, occasionally flatus incontinence but greatly bothered of it - Australian pelvic floor questionnaire/ German version [9]
No supervised previous physiotherapy

Therapy:
Practical Session:

1. Abdominal muscle ultrasound:
Transversus, external and internal abdominal oblique muscles, transversus-pelvic floor co-contractions and adverse external oblique contractions [10].
Upper and middle part of the abdominal muscles [11]

2. Supra-pubic (abdominal) ultrasound.
Assessment of movements of the bladder base during pelvic floor contraction, straining and coughing
This method is applicable in female and in male.
3. Perineal (translabial) ultrasound
In females to evaluate the bladder neck and the puborectalis muscle movements during pelvic floor contraction, straining, coughing and other functional tasks.

Perineal probe and application:

Landmarks for perineal ultrasound

Rest position

Contraction of PFM
References:

3 Smith MD, Coppieters MW, Hodges PW. (2007) Postural activity of the pelvic floor muscles is delayed during rapid arm movements in women with stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 18: 901-11
Scientific background of pelvic motor control, coordination training and specific stabilisation of the pelvic floor

Kaven Baessler, MD
Börbel Junginger, PT, MT (OMT)

Pelvic floor muscle
• Part of the tonic muscle system
• Part of the abdominal capsule
• Predominantly slow-twitch-fibres

Type I – slow twitch fibres in the pelvic floor

Physiological reactions: „pre-programming“

Physiological and pathophysiological studies: an overview
• Hides et al. 1996: pain inhibition of deep multifidus muscle
• Hodges et al. 1996: Loss of pre-programming of transverse abdominis muscle
• Smith et al. 2006: Loss of pre-programming of pelvic floor muscles
• Hungerford et al. 2003: EMG-onset of multifidus muscle delayed in SIJ-pain-patients
• Hodges et al. 2003: Immediate loss of pre-programming after experimentally induced pain
Multifidus muscle

Patients
- First episode of low back pain (unilateral); n=41

Control group:
- No back pain

Outcome measures
- Cross-sectional area in ultrasound and MRI

Results:
- Muscle atrophy within 24 h
- Cross-sectional area symmetrical in controls
- US correlates with MRI measures

Morphological changes

Normal (A) and diseased side (B) of multifidus muscle

- Normal
- Moth-eaten cells
- Large group atrophy of multifidus

Specific rehabilitation of TrA

- RCT: versus standard treatment in patients with radiological diagnosed spondylolisthesis
- Follow-up at 3, 6, 30 months
- Results:
 - Significant reduction in pain and function; maintained after 30 months
 - Significant reduction in recurrence of back pain in the specific training group compared with the control group at 1 and 3 years follow-up after specific rehab and without recommendation of specific ongoing exercises

<table>
<thead>
<tr>
<th></th>
<th>Specific training</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year follow-up</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>3 years follow-up</td>
<td>32</td>
<td>78</td>
</tr>
</tbody>
</table>

Cross sectional area after treatment

- Control
- Specific rehabilitation

Induced pain

Hodges et al. 2003:
- Loss of pre-programming of TrA immediately after injection of hypertonic saline into longissimus muscle

Motor control

- Emotional components like anticipation of pain are responsible for changes in strategy of muscle control (delayed onset of deep muscles, hyperactivity of superficial muscles)
- Isometric leg contractions: patients show a significant smaller increase in TrA thickness compared with healthy controls, but no difference in IO/EO

1. Moseley, 2004; 2. Ferreira, 2004
Pre-programming:
• co-contraction of PFM + transverse abdominis (TrA)
• pre-contraction

Stress urinary incontinence
Involuntary loss of urine at physical exertion

Dysfunction in stress incontinent patients:
loss of pre-programming

Urge incontinence
Urgency with fear of leakage

Continence during increases in abdominal pressure
1. Pre-contraction
2. Bladder neck elevation and support
 ➔ maintained during “stress”
 ➔ with sufficient increase in intraurethral pressure
3. Correct coordination
Incontinence

1. Loss of Pre-contraction
2. Delayed “Pre”-contraction
3. Loss of bladder neck support or failed bladder neck elevation
4. Incorrect coordination (e.g. loss of pelvic floor contraction during breathing)
5. Loss of supportive pelvic floor contraction e.g. while standing up
6. Pelvic floor contraction that does not result in an elevation of an unsupported bladder neck

Needle EMG and intravaginal surface EMG

reveal the relationship between contractions of abdominal and pelvic floor muscles, bladder neck elevation and intra-abdominal pressure in healthy women

Junginger B\(^1,2\), Baessler K\(^2\), Sapsford R\(^1\), Smith M\(^1\), Hodges PW\(^1\)

1. Division of Physiotherapy The University of Queensland Brisbane Australia, 2. Charité University Hospital Berlin Germany

Methods

Results

Intraabdominal pressure

Pelvic-floor rehabilitation:

pre – contraction before coughing, sneezing, etc.

We know:

Gentle PFMC Moderate PFMC Maximal PFMC
Bladder neck elevation with different levels of effort of pelvic floor muscle contraction

The aim of this study was to assess the effect of maximal and submaximal voluntary pelvic floor muscle contractions on the bladder neck, transverse abdominis and internal oblique muscles and on the intraabdominal pressure IAP.

Kaven Baessler, Bärbel Junginger
Charité Universitätsmedizin
Pelvic Floor Centre
Berlin, Germany

Methods

- Methods -

• 20 premenopausal nulliparous women without pelvic floor disorders
• 20 urogynaecological patients without pelvic organ prolapse beyond the hymen or previous PF surgery
• BN position was estimated with PUS using a coordinate system running through the pubic symphysis
• The thickness of the Tra and IO was measured simultaneously with an abdominal ultrasound probe using a previously validated method
• The intraabdominal pressure was measured with an intrarectal probe.

Results

Pelvic floor contraction, bladder neck elevation and intraabdominal pressure

Conclusions

• Already 25% of a maximal pelvic floor contraction significantly elevates the bladder neck
• A maximal pelvic floor contraction does not further elevate the bladder neck after 50% of effort in pelvic floor-healthy women
• There is a considerable increase in intraabdominal pressure with maximal PFM contraction power similar to pressure increases during a nose blow and moderate coughing
• Maximal pelvic floor muscle contractions are not necessary to elevate the bladder neck and have the disadvantage of increasing the intraabdominal pressure undesirably due to co-contractions of the superficial abdominal muscles

Implications for specific pelvic floor rehabilitation

Re-education integrating physiology

• Pre-contraction
• Co-contraction
• Bladder neck support and elevation

Ensure bladder neck effective pelvic floor contraction
Avoid excessive increase in intraabdominal pressure

• No maximal PFM contraction
• Submaximal (25%-50%) pelvic floor contractions

Ensure maintenance of pelvic floor contraction during coughing or breathing e.g.
Pelvic floor rehabilitation program based on physiological motor control, applying ultrasound and palpation as tools to diagnose pelvic floor dysfunction and to give biofeedback and employing validated questionnaires to assess the efficacy

Bladder neck effective, controlled, integrative pelvic floor therapy
Specific pelvic floor rehabilitation programme

„Bladder neck effective, controlled, integrative pelvic floor therapy“

Assessment of individual symptoms
Evaluation of individual dysfunction
Explanation of individual pathophysiology
Teaching of bladder neck elevation
Training and integration of PFMC
Follow-up evaluation

• Individual symptoms
 – SUI
 – OAB
 – Mixed incontinence
 – (Voiding problems)
 – (Defaecation problems)
 – Prolapse symptoms

• Individual dysfunction
 – Lack of coordination
 – Reduced PFM contraction
 – Lack of PFM contraction
 – Delayed PFM contraction
 – No bladder neck elevation
Instruments to assess pelvic floor dysfunction for teaching, biofeedback and follow-up

- Abdominal ultrasound (abdominal muscles, bladder)
 - co-contraction TrA/ PFMs
 - elimination of undue co-activation of IO
- Perineal ultrasound (bladder neck, puborectalis muscle)
 - Bladder neck elevation and support essential for continence
- Vaginal and rectal palpation
 - evaluation of quality and quantity of parts of a PFM contraction
 - Teaching of awareness and perception of PFMC
 - Localization of pain
- PF questionnaire
 - Validated assessment of symptoms
 - Pre and post therapy

Characteristics of the programme

- Evaluated programme (our study IUGA poster literature)
- Validated assessment instruments (questionnaire, ultrasound, palpation)
- Bladder neck effective PFMs contraction and avoidance of maximal contractions
- (re-)education of pre-contractions
- Perineal ultrasound as a tool for diagnostic and didactic biofeedback and as a control instrument
- Follow-up part of the programme

Goals

- bladder neck effective PFMs contraction
- normal PFMs-TrA-coordination during stress, urge, etc.
- Reduction of symptoms and increase of QoL
- Integration of PFMs into daily routine (in contrast to lifelong training)
Ultrasound - validated instrument for measurements in clinic and research

- Direct measurement of muscle thickness and position (TrA, IO, EO; Hodges 2003)
- Imaging of bladder movement via suprapubic ultrasound (Sherburn, Murphy 2002)
- Validation of movement of the bladder base (perineal ultrasound) during PFM contraction and during straining (Schaer et al. 1995)

For the maintenance of continence, pelvic floor muscle (PFM) contraction is required to stabilise the bladder neck and to compress the urethra during increased intra-abdominal pressure (IAP)

History of ultrasound for evaluation of BN position and movement

- 1958 Hodgkinson: Lateral bead chain cystography
- 1975: lateral chain urethrocystography
- 1992 Wise et al.: perineal sonography
- 1995 Schaer et al.: reproducibility, good inter-examiner agreement
Advantages of US

- Not dangerous
- Easy to apply for examiner
- Easy to understand for patient
- Accepted (scientifically, clinically)
- No radiation – important for longer lasting during biofeedback procedures

perineal ultrasound or translabial US: midline-sagittal view
Alternative method of bladder movement assessment

Abdominal supra-pubical ultrasound

Assessment of bladder movement

Assessment of bladder volume
Advantages of abdominal US

• Not invasive
 • No undressing necessary
 • Also possible in male patients

• Specialised physios are used to apply abdominal US for abdominal muscle assessment (TrA and IO; EO)

Assessment of abdominal muscles via abdominal US

Skin and sub-cut. tissue
EO
IO
TrA

Advantage of perineal ultrasound: validated assessment of BN movement

• Schaer et al. 1996

• Method with coordinate system through pubic symphysis

Bladder neck at rest

Bladder neck at contraction

Vector: $c = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

$c = $ cranio-ventral movement

= vector
Normal values and hypermobility of BN movement

- **Normal**: 0-40 mm in young, nulliparous, continent women (Brandt, Peschers, Reed, Dietz)
- **Hypermobility**: a cut-off value between 5 mm [Reed, Reilly] and 14 mm [Lin, Meyer]
- Lower BN position in standing than in supine (Meyer)
- Women with joint hypermobility have a lower BN position at rest (King)
- Valsalva manoeuvre: important to distinguish functional testing with PFM contraction or evaluation of pelvic organ prolapse with relaxed pelvic floor (Örnö and Dietz 2007)

Ultrasound for biofeedback

- Imaging of PF function
- Imaging of a region of the body that is normally not visible
- Application possible in different patient positions: lying, sitting, standing
- Application during functional tasks: sneezing, coughing and during urge symptoms (OAB)
- Application symptom-specific (e.g. bending over)

Terminology: Rehabilitative ultrasound imaging or DYNAMIC REHABILITATIVE US

Rehabilitative:
1. assessment
2. explanation/ teaching
3. training
4. re-assessment
The Use of Real-Time Ultrasound Imaging for Biofeedback of Lumbar multifidus Muscle Contraction in Healthy Subjects

- 2 groups: voluntary contractions with and without US biofeedback
 - Follow-up time: 1 and 2 weeks
- Results: US-group better results after 1 week, increase in muscle thickness (maintenance in week 2)

Normal function and findings in patients

Healthy woman: function during coughing and laughing
Patient with no pre-contraction and therefore: BN-funneling and -hypermobility during coughing.

Patient with no pelvic floor awareness.

Patient with bad coordination; co-contraction of all abdominal muscles.
Same patient 3 days later after one biofeedback session and coordination training as a home programme.

Insufficient perception; some activity of dorsal PFM but counter-activity of abdominal muscles (IAP ↑).

Better coordination 2 weeks later: no IAP ↑ but still insufficient elevation.
Patient with a good contraction but unable to hold during breathing

Same patient during coughing
Patient with a stage II cystocele: reposition possible but no hold because of structural defects

Follow up of a rehabilitation program with focus on coordination using US
- n=55 women; 34-83 years (median 52 years)
- pure SUI n=9; pure OAB n=9, mixed OAB-SUI n=37
- Exclusion criteria: neurogenic bladder, previous pelvic floor surgery
- 0-4 children (median 2; four nulliparas)
- validated „German pelvic floor questionnaire”
- Visual analogue scale (VAS) for satisfaction with care and with treatment
- Improvement scale for bladder, bowel and sexual function (much better-a little better-no change-a little worse-much worse)

Junginger, Greiner, Baessler 2008

Results
- Follow-up time: median 7 (1-18) months
- Median treatment sessions: 2 (1-6)
- Duration of one session: 15 min - 90 min
- Initial treatment session: 60 min

Results pelvic floor function
- 91% (50 / 55) improvement of bladder function
 - a little better: n=22 / much better: n=28
- Correlation between satisfaction with treatment and subjective improvement - 0.47, P< 0.001
- 67% (31 / 46) women with SUI symptoms cured/improved
- 78% (36 / 46) women with OAB symptoms cured/improved
- No association between length of follow up and treatment success/satisfaction with treatment
• **Pre-contraction**: Routinely performed by 71% (39/55 women)
 • Women who performed pre-contractions were more likely to report fewer urinary incontinence [p=0.021]