The Ins and Outs of Laparoscopic Abdominal Sacralcolpoperineopexy
W23, 30 August 2011 09:00 - 12:00

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Topic</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>09:10</td>
<td>Introduction</td>
<td>Patrick Woodman</td>
</tr>
<tr>
<td>09:10</td>
<td>09:30</td>
<td>Overview: Why Laparoscopic Abdominal Sacralcolpoperineopexy?</td>
<td>Colleen McDermott</td>
</tr>
<tr>
<td>09:30</td>
<td>09:45</td>
<td>Pelvic Floor Reconstruction Graft Materials</td>
<td>Douglass Hale</td>
</tr>
<tr>
<td>09:45</td>
<td>10:00</td>
<td>Suture Techniques</td>
<td>Colleen McDermott</td>
</tr>
<tr>
<td>10:00</td>
<td>10:20</td>
<td>Deep Anterior and Posterior Dissection and Vaginal Graft Application</td>
<td>Douglass Hale</td>
</tr>
<tr>
<td>10:20</td>
<td>10:30</td>
<td>Discussion</td>
<td>All</td>
</tr>
<tr>
<td>10:30</td>
<td>11:00</td>
<td>Break</td>
<td>None</td>
</tr>
<tr>
<td>11:00</td>
<td>11:20</td>
<td>Laparoscopic Technique: Port Placement, Mechanics & Pitfalls</td>
<td>Colleen McDermott</td>
</tr>
<tr>
<td>11:35</td>
<td>11:50</td>
<td>Concomitant Urinary Incontinence Surgery</td>
<td>Douglass Hale</td>
</tr>
<tr>
<td>11:50</td>
<td>12:00</td>
<td>Questions</td>
<td>All</td>
</tr>
</tbody>
</table>

Aims of course/workshop

1. To review the pertinent anatomy pursuant to laparoscopic pelvic reconstructive surgery.
2. To discuss the advantages and disadvantages of laparoscopic repairs.
3. To describe the Laparoscopic Abdominal Sacralcolpoperineopexy (LASCP) technique, with and without Robotic Assistance, as well as reveal laparoscopic “pearls” to make the job easier.
4. To review the evidence-based literature about these repairs.
5. To answer the question: "The uterus: does it need to come out?"
6. To discuss the addition of concomitant procedures to the LASCP.

Educational Objectives

Laparoscopic Sacral Colpoperineopexy (LASCP) offers similar excellent success rates to its open counterpart, and these minimally-invasive procedures are becoming more popular. Laparoscopic approaches offer benefits of lower blood loss, quicker short-term and long-term convalescence, better visualization and improved retraction. However, outside of a training program and/or without specialized surgical assistants, it is difficult to gain sufficient experience in advanced laparoscopic skills. This workshop would help guide the experienced surgeon through the process of adding advanced laparoscopic reconstructive surgery skills to their armamentarium. There are several specialized and improvised devices available that can assist in laparoscopic procedures. Graft materials, port placement, instrumentation, technique, and "pearls" on how to assist oneself will also be discussed. Finally, the evidence-based medical literature will also be reviewed.
The Ins and Outs of Laparoscopic Abdominal Sacrocolpoperineopexy
ICS Annual Scientific Meeting 2011
Glasgow, Scotland

Patrick J. Woodman, DO, MSCR; FACS, FACOOG
Associate Clinical Professor Obstetrics & Gynecology
Asst. Director Female Pelvic Medicine & Reconstructive Surgery Fellowship
Department of Obstetrics & Gynecology
Indiana University School of Medicine

Disclosures

• Patrick J. Woodman, DO, MS; FACS, FACOOG
 – Speakers’ Bureau, Pfizer Pharmaceuticals
 – Unrestricted Educational Research Grant, Ethicon Women’s Health & Urology
• Colleen McDermott, MD, MS; FRCOG
• Douglass S. Hale, MD; FACOG
 – Consultant, Ethicon Women’s Health & Urology
 – Research Support, Urogynecology Advisory Board, Allergan Pharmaceuticals

Educational Objectives

• To review the pertinent anatomy pursuant to laparoscopic pelvic reconstructive surgery
• To discuss the advantages & disadvantages of laparoscopic repairs
• To describe the LASCP technique, with & without Robotic assistance and “pearls”
• Review the evidence-based literature
• Does the uterus need to come out?
• To discuss the addition of concomitant procedures to LASCP

Workshop #23 Schedule:
The Ins and Outs of Laparoscopic Abdominal Sacrocolpoperineopexy

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Introduction</td>
<td>Woodman</td>
</tr>
<tr>
<td>09:10</td>
<td>Overview: Why LASCP-P?</td>
<td>McDermott</td>
</tr>
<tr>
<td>09:30</td>
<td>Pelvic Floor Recnstr Graft Materials</td>
<td>Hale</td>
</tr>
<tr>
<td>09:45</td>
<td>Suture Techniques</td>
<td>McDermott</td>
</tr>
<tr>
<td>10:00</td>
<td>Deep Dissection & Vaginal Graft Appln</td>
<td>Hale</td>
</tr>
<tr>
<td>10:20</td>
<td>Discussion</td>
<td>Panel</td>
</tr>
<tr>
<td>11:00</td>
<td>Laparoscopic Technique</td>
<td>McDermott</td>
</tr>
<tr>
<td>11:35</td>
<td>Robotic-Assisted LASCP Technique</td>
<td>Woodman</td>
</tr>
<tr>
<td>11:50</td>
<td>Concomitant Incontinence Surgery</td>
<td>Hale</td>
</tr>
<tr>
<td>12:00</td>
<td>Questions?</td>
<td>Panel</td>
</tr>
</tbody>
</table>

Housekeeping

• Restrooms
• Break 10:30-11:00
• Syllabus / Handouts
• Evaluations
OBJECTIVES

- Procedure Evolution
- What’s the Evidence?
- Advantages/Disadvantages

Procedure Evolution

- POP: prevalent condition, 11.1% lifetime risk of requiring surgical correction by the age of 80\(^1\)
- Key to surgical correction: **FIX THE APEX!**
- **Sacral Colpopexy:**
 - Gold standard for correction of all three vaginal compartments\(^2-4\)
 - Re-suspends the vaginal apex to the anterior longitudinal ligament overlying the sacrum using graft material

- **1957 Arthure & Savage:** anchored posterior uterine fundus to the anterior longitudinal ligament\(^1\)
- **1958 Huguier & Scali; 1962 Lane:** addition of graft material between the vagina and sacral promontory\(^2-3\)
- **1970’s Birnbaum:** proximal placement of graft at S3 to S4 to recreate the natural vaginal plane\(^4\)
- **1970’s Sutton:** proximal end of the graft be attached at the S1 to S2 vertebral level to see the middle sacral vessels\(^5\)

Procedure Evolution

- **Graft Configurations:** single piece \(\rightarrow\) cone \(\rightarrow\) Y-mesh \(\rightarrow\) 2-strap

Procedure Evolution

- **Biologic Grafts**
 - autologous, allograft, xenograft
 - Advantage: reduced erosion rates
 - Disadvantage: reduced longevity

- **Synthetic Grafts**
 - Advantage: durability
 - Disadvantage: increased erosion rates
 - type I polypropylene mesh: excellent anatomic cure rates, few complications\(^2-3\)

References:

Procedure Evolution

- 1997: posterior graft extension to perineum → Sacral Colpoperineopexy (SCP)
 - recreate entire length of rectovaginal septum → correct posterior wall defects and perineal descent

 SCP

1. Abdominal-vaginal approach starting at vagina
 - open posterior vaginal wall, dissect laterally to levator ani muscles, dissect superiorly to enterocele sac
 - anchor graft laterally to pelvic sidewall into the fascia overlying the levator ani muscles and distally to the perineal body
 - enter peritoneal cavity and place proximal portion of graft into cavity
 - perineorrhaphy
 - abdominal portion of case

2. Abdominal-vaginal approach starting abdominally
 - posterior graft placed at the level of the perineal body during the abdominal portion of the case
 - at the end of the case, a perineorrhaphy is performed and the distal portion of the graft is attached to the perineal body

 SCP

Abdominal-vaginal approaches (1 & 2):
- narrow the vaginal introitus
- rebuild the perineal body
- require copious pelvic irrigation with antibiotic solution after sacral graft attachment

3. Abdominal approach
 - attachment to perineal body done solely through an abdominal approach
 - commonly done when a perineorrhaphy is not required
 - strong distal fixation is more difficult to attain

 SCP

- open laparotomy, traditional laparoscopy, robotic-assisted laparoscopy
- Dorsey and Cundiff 1994 → LSC
 - improve pelvic visualization
 - reduce operative morbidity
 - improve post-operative function
- Di Marco et al. 2004 → Robotic LSC
 - shorten learning curve associated with LSC
 - simplify execution of laparoscopic maneuvers
Procedure Evolution

- Approach Selection
 - level of comfort and expertise
 - need for concomitant procedures
 - patient factors → age, BMI, previous surgery, co-morbidities that limit anesthesia time

What's the Evidence?

- LSC
 - observational studies only
 - no clinical trials
 - no systematic reviews
 - Ross et al → 51 patients, 5 years post-op
 - 93% objective cure rate
 - 3 patients had recurrent vault prolapse

What's the Evidence?

- LSC
 - Higgs et al → 103 patients, mean follow-up
 - 92% had successful vault support
 - 35% had non-vault prolapse recurrence
 - 79% subjectively cured or improved
 - Claerhout et al → 132 patients, 12.5 months post-op
 - 2% vault recurrence
 - 3% anterior wall recurrence
 - 18% posterior wall recurrence
 - 92% subjective cure rate

What's the Evidence?

- Bladder Function after LSC
 - 86% improvement or no change
 - 2.8% post-operative stress urinary incontinence, 18% de novo or persistent urge urinary incontinence
 - 5 to 7% de novo urinary symptoms

What's the Evidence?

- Bowel Function after LSC
 - 17% persistent obstructed defecation
 - >50% persistent constipation and 5% with de novo constipation

- Sexual Function after LSC
 - 9-23% de novo dyspareunia
 - ~50% with pre-operative dyspareunia improve after LSC

What's the Evidence?

- LSC Complications
 - 402 cases of LSC → no significant difference in intra- or peri-operative complications
 - overall complication rates
 - 0.75% for hematoma
 - 2.2% for ileus or small bowel obstruction
 - 1.5% for bladder injury
 - 0.75% for bowel injury
 - 0.25% for ureteric injury
 - 1.2% mesh erosion rate
What’s the Evidence?

LSCP

- McDermott et al1 → 51 A-LSCP patients and 17 AV-LSCP patients, 1 year post-op
- no differences in POP-Q measurements
- A-LSCP group had fewer mesh erosions and a lower rate of dyspareunia
- AV-LSCP group had fewer recurrent symptoms of prolapse
- both groups had similar rates of surgical satisfaction

LSCP versus ASC

- Paraiso et al1 → 96 LSC patients versus 61 ASC patients; similar complication and re-operation rates
- Haider et al2 → 29 LSCP patients versus 22 ASC patients
- apical recurrence: LSCP=1; ASC=4
- posterior recurrence: LSCP=6; ASC=5
- no polypropylene mesh erosion
- critical point in the learning curve for LSCP was 10 cases
- Klauschie et al3 → 44 LSCP patients versus 41 ASC patients
- similar intra- and peri-op complication rates
- no apical failures
- point C significantly higher in ASC group at 6 weeks and 6 months post-op, but this difference was gone by 1 year post-op
- anterior recurrence: LSCP=1; ASC=5
- posterior recurrence: LSCP=3; ASC=6

What’s the Evidence?

Robotic LSC

- case series and cohort studies
- Elliott et al1 → 21 patients, 1 year post-op
 - 95% apical cure rate
 - 100% surgical satisfaction rate
- Akl et al2 → 80 patients, 7 post-op
 - recurrent prolapse rate of 3.7% (one apical, one anterior, and one posterior)

What’s the Evidence?

Robotic LSC

- Moreno Sierra et al1 → 31 patients, 2 years post-op
 - no recurrences
- Shariati et al2 → 77 patients, 1 year after robotic LSCP
 - one patient with stage II recurrence
 - 94% surgical satisfaction rate after 1 year of follow-up

What’s the Evidence?

Bladder Function after Robotic LSC
- not well investigated
- 9.5% post-op urinary incontinence (de novo/type not specified)¹
- urodynamic parameters not significantly changed by this procedure²
- 1% persistent overactive bladder symptoms, 19.5% de novo urge incontinence³
- No studies on bowel or sexual function

Robotic Complications
- Akl et al² → robotic LSC complication rates
 - 1.2% cystotomy
 - 1.2% enterotomy
 - 1.2% ureteric injury
 - 1.2% post-operative ileus
 - 6% mesh erosion ¹⁴
- Shariati et al¹ → robotic LSCP complication rates
 - 5.2% cystotomy
 - 1.3% proctotomy
 - 6.5% post-operative ileus
 - 9.1% suture and/or mesh erosion rate ⁵⁴.

Robotic LSC versus ASC
- Geller et al¹ → 73 robotic LSC patients and 105 ASC patients, 6 weeks post-op
 - robotic group had significantly higher POP-Q point C values (-9cm versus -8cm), other anatomic measures were similar
 - robotic group had longer OR time, less blood loss, and shorter hospital stay
 - no significant differences for intra- and post-operative complications

Cost Differences
- Patel et al¹ → direct and total hospital costs between LSC, robotic LSC, ASC
 - 15 cases reviewed, 5 per group
 - OR costs: LSC and robotic LSC >>> ASC
 - other direct costs (anesthesia, hospital room, lab tests, and medications): not different
 - total charges: LSC and robotic LSC >>> ASC
 - LSC $19,308.94; RSCP $24,161.48; ASC $13,149.99
 - conclusion: RLSC has highest direct and total costs, ASC was the least expensive

Advantages/Disadvantages

LSC
- Advantages
 - minimally invasive (less blood loss, shorter hospital stay, shorter recovery, less pain)
 - excellent visualization of pelvis and presacral space
 - comparable cure rates to ASC
- Disadvantages
 - technically challenging, need for skilled assistant
 - operator learning curve
 - longer OR times (?)
 - cost

LSCP
- Advantages
 - better posterior outcomes (?)
 - reduced perineal descent (?)
- Disadvantages
 - more extensive posterior dissection
 - abdominal-vaginal approach → increased risk of mesh complications (?)
Advantages/Disadvantages

Robotic LSC

- Advantages
 - skilled surgical assist not necessary
 - improved instrument dexterity
 - minimally invasive (less blood loss, shorter hospital stay, shorter recovery, less pain)
 - excellent visualization of pelvis and presacral space
 - comparable cure rates to ASC

- Disadvantages
 - availability
 - operator learning curve
 - no tactile feedback
 - cost

Pelvic Floor Reconstruction: Graft Materials

Douglass S. Hale, M.D., FACOG, FACS
Director Female Pelvic Medicine and Reconstructive Surgery Fellowship
Indiana University Health System

Disclosures

Relevant financial relationships exist with the following commercial interests:
- Consultant: Women’s Health and Urology
- Funded Research: Allergan

Objectives

1. Outline the different graft materials available for use in pelvic surgery.
2. Describe the characteristics of synthetic grafts.
3. Choose an appropriate mesh for use in prolapse repair.

How do we reestablish support once its lost?

- Use native tissue
- Use a graft

ANTERIOR and POSTERIOR VAGINAL WALLS

MRI of Levator Ani

Anterior wall
Weber, 1997

Posterior wall
DeLancey, 1999

MRI of Levator Ani

Root
Ballooning
Hernia

- RCT – Primary or First Repeat Incisional Hernia Repair (Suture vs. mesh), N=200, F/U 3yrs
- Recurrence Rates
 - Primary: Suture 43% vs. Mesh 24%
 - First Repeat: Suture 58% vs. Mesh 20%

Open Mesh vs. Non-Mesh for Groin Hernia Repair

- 20 studies
- Most frequent operation in general surgery
 - 700,000 in US in 1993.
- Reduction in recurrence between 50-75%
- Some evidence of quicker return to work and lower rates of persisting pain

Surgical Route for Prolapse or Graft vs. Native Tissue

- Prospective, randomized study n=80
 - Follow up = 2.5 years (1.5-5.5)
 - Reoperation rate 33% for vaginal, 16% for abdominal
 - 2 x the success rate with abdominal surgery for prolapse
- Retrospective n=117 / f/u = 101pts
 - Follow up approximately 2 years for each group
 - Recurrent prolapse = 33% vaginal / 19% abdominal
 - “Both highly effective”
- Apex failure was 17% in sacrospinous vs. 4% in sacral colpopexy (to intoitus)

Difference is graft vs. native tissue repair

Graft Materials

- Synthetics
 - Absorbable / permanent
- Autografts
 - Rectus / fascia lata / patellar
- Allografts – homograft (same species)
 - Fascia lata / Duramater / pericardium / patellar / etc.
- Xenografts – heterograft (different species)
 - SIS = small intestine submucosa
 - Porcine Dermis
 - Bovine pericardium

 Amid Classification of Surgical Meshes

- Type I – monofilament, macroporous (>75μm)
- Type II – microporous (<10μm)
- Type III – macroporous with either multifilaments or microporous elements
- Type IV – biomaterials with submicronic pores

Synthetic Meshes

- Multifilament
 - Polyester
 - Polypropylene
- Monofilament
 - Polypropylene
 - Mersilene (Ethicon)
 - Surgipro / I/Vs / Ob-tape
 - Atrium (Atrium Medical)
 - Marlex / (CR Bard)
 - Prolene/Gynemesh (Ethicon)
 - Polyform (Boston Scientific)
 - Intepro (American Medical Systems)
 - Dolphin (Futura)
 - VitaMesh (Proxy Biomed)
 - At least 10 others

- Expanded PTFE
- PTFE
- Monofilament
 - Polypropylene
 - ULTRAPRO*
 - Gorsetex (WL Gore)
 - Telfon (CR Bard)
 - Proceed – PP + polydioxanone + oxidized regenerated cellulose (Ethicon)
 - Pelvitex – PP + porcine collagen (CR Bard)
 - Prolift +M = Polypropylene + Monocryl

Synthetic Meshes

- Structure
- Thickness
- Flexural rigidity
- Tensile and bursting strength
- Pore size
- Surface texture
- Monofilament vs. multifilament
- Absorbable vs non-absorbable
- See through quality

Synthetic Mesh Structures

- Knitted, Multifilament
- Woven, Multifilament
- Knitted, Monofilament
- Non Knitted Non Woven

Course: Row of loops or stitches running across the knit fabric
Wale: Vertical chain of loops in the lengthwise direction of the fabric, formed by one needle

Intra-abdominal Pressure
- Coughing and Jumping generate maximal intra-abdominal pressure
 - 170mmHg (tensile strength of 32N/cm)
 - Meshes generally over engineered
 - Vipro = 360mmHg

Comparison of mesh strength with abdominal wall pressures

Mesh Weights
- Heavy weight meshes
 - 100 g/m² (1.5 g for 10 x 15 cm mesh)
- Moderate weight meshes
 - 50 g/m² (0.75 g for 10 x 15 cm mesh)
- Light weight meshes
 - 33 g/m² (0.5 g for 10 x 15 cm mesh)
Smartmesh™

- 19gm/m²
- 1.8mm pores
- Patented 100 micron interstitial Smartpores™
- Promotes stronger new collagen formation and more mature collagen than heavy meshes

TIGR Matrix Surgical Mesh

- 100 percent resorbable, synthetic matrix, knitted from two different resorbable fibers that degrade at different rates following implantation.
- The first fiber is a copolymer of glycolide, lactide and trimethylene carbonate. The second fiber is a copolymer of lactide and trimethylene carbonate. Both fibers degrade by bulk hydrolysis once implanted.

Pore Size

BACTERIA – 0.5 – 5.0 μm
PMN’s / MACROPHAGES – 10-50 μm
RBC – 9 μm
FIBROBLAST – 15 x 50 μm
SYNTHETIC MESH PORE SIZE – 10-1000 μm range
- Now with some composite meshes, may reach >4000 μm
Not all polypropylene is the same!!!!!

Bridging
This leads to a stiff scar plate and reduced flexibility. It occurs in meshes with small pores of less than 800 μm.

Stress shielding

Stress shielding?

Tobacco use is a risk factor for mesh erosion after abdominal sacral colpopereineopexy

- Case control study
 - 27 cases of mesh erosion
 - 81 matched controls
- OR of erosion 4.4 (1.3-14.4)

Risk factors for mesh/suture erosion following sacral colpopexy

- PFDN 322 patients in CARE study at 2 years – 20 (6%) had a mesh or suture erosion
- Increased odds ratios of erosion with
 - ePTFE - 4.2
 - Concurrent hysterectomy - 4.9
 - Smoking - 5.2

Biograft Data

Randomized Trial of 3 Surgical Techniques

- 106 women = stage II or greater
 - 37 traditional posterior colporrhaphy
 - 37 site specific
 - 32 site specific with Fortagen™ – sis collagen
- At 1 year – failure as stg II and hymen:
 - 3/33 (9%) 1/33 (3%) post colp
 - 5/37 (13.5%) 2/35 (5%) site specific
 - 9/27 (33%) 4/29 (14%) graft+site specific

Tutoplast™ Sacral Colpopexy

- 100 patients randomized
 - 46 biograft, 54 mesh
 - 1 year follow-up
 - 9/45 (20%) mesh and 32% (14/44) biograft = failed
 - 15/18 point Aa = -1
 - 3/18 point Ap = -1
 - No point C failures

The ideal graft has not been developed.

Resistance to infection, minimal foreign body reaction, biocompatibility, pliability, strength, and molecular permeability are ideal properties.

For synthetics, Type I polypropylene meshes appear to be the best.

Future

- Mesh design
 - Lighter weight, large pore meshes induce less scar tissue formation, less retraction
 - Need to develop mesh with ease of handling
- Decrease complications
 - Erosions
 - Foreign body reactions, scar tissue formation
- New materials
 - Even better interaction with host
Laparoscopic Technique: Port Placement, Mechanics, and Pitfalls

Dr. Colleen D. McDermott MD, FRCSC
August 30th, 2011

Objectives

- Patient and Room Setup
- Abdominal Entry
- Pneumoperitoneum
- Port Placement for LSCP
- Port Closure
- Port Pitfalls
- The Future: Single Port?

Patient & Room Setup

- 24 hours before surgery → clear fluid diet, bowel prep (osmotic + stimulant laxative), potassium supplement
- morning of surgery → +/- fleet enema, prophylactic antibiotics and Heparin, inflatable sequential compression devices on lower extremities

Patient & Room Setup

- In OR →
 - dorsal supine lithotomy
 - legs in adjustable Allen stirrups
 - bed broken below hips for vaginal access
 - Check legs to ensure they can be positioned where the hip joints are neutral

Patient & Room Setup

- In OR →
 - arms tucked in at both sides with extra padding (consider use of extra shoulder padding to prevent slipping while in steep trendelenberg)

Patient & Room Setup

- prepared abdominally and vaginally
- double drape technique
- Video
Patient & Room Setup

- vaginal portion completed and top drape removed
- surgeons remove their gown and gloves and re-gown and re-glove

Abdominal Entry

- three options
 - open entry → Hassan technique
 - closed entry → Veress needle
 - optical port

- generally in the infraumbilical region
- primary camera point in line with the vagina and approaches it at 45° angle

Abdominal Entry

- three options
 - open entry/Hassan technique
 - favoured by general surgeons and urologists
 - sharp and blunt dissection through incision
 - fascia incised
 - muscle layers split
 - peritoneum incised
 - fascial stay sutures
 - Hassan blunt tip cannula is introduced and secured
 - no evidence to support that this is superior to any other abdominal entry technique
 - closed entry → Veress needle
 - blind insertion
 - tactile feedback as it passes through the layers of the abdominal wall
 - consider use of Palmers point (3cm below the subcostal border at the midclavicular line) in patients with intra-abdominal adhesions, an umbilical hernia, or after 3 failed attempts at the umbilicus

Abdominal Entry

- Veress needle
 - blind insertion

Abdominal Entry

- Veress needle
 - safety checks not useful in confirming placement of needle
 - entry pressure of <10mmHg is a reliable indicator of correct placement (insert with gas attached and running)
 - elevation of the anterior abdominal wall is not recommended
 - angle of the needle should vary according to patient BMI → 45° for non-obese and 90° for obese
Abdominal Entry

- optical trocar
 - hollow, with a 0° scope loaded to transmit real-time images while transecting the abdominal wall layers
 - requires significant axial thrusts, anterior abdominal wall lifted
 - minimizes the size of entry wound
 - visceral and vascular injuries can still occur

Abdominal Entry

- optical trocar
 - Endopath Optiview → no pre-insufflation required
 - Visiport → pre-insufflation required

Port Placement for LSCP

- 12mm Optiview trocar in the infraumbilical space
- 12mm Optiview trocar in RLQ (2cm superior and medial to the right ASIS)
- 5mm trocar in left paramedian region (10cm lateral to the infraumbilical port)
- 5 mm trocar either in the suprapubic region or LLQ

Port Placement for LSCP

- surgeon → left side, sutures using LUQ port and suprapubic port
- 1st assist → right side, holds laparoscope, introduces the needle and passes it to the surgeon, performs extracorporeal knot tying
- 2nd assist → between legs, manipulates vaginal probe for exposure during suturing
Port Closure

- All 10 and 12mm ports should be closed
- Incorporate peritoneum into fascial closure
- Standard suturing → often done blindly

Port Closure

- Closure facilitated by a number of techniques and devices
 - Carter-Thomason Close-Sure System
 - Two parts: Pilot guide and suture passer
 - The suture passer pushes the suture through the guide, the fascia, the muscle, and the peritoneum
 - Elashry et al. → this device facilitates the fastest trocar wound closure with 100% interoperative success and no post-operative closure-related complications

Port Pitfalls

- **PATIENT FACTORS**
 - Obesity:
 - Insert Veress needle at 90°
 - Be aware of angle of insertion for secondary ports and any adipose tissue that may limit rotation
 - Place ports closer to site of operation (or ask for longer cannulas and instruments)
 - More complications with the Veress needle
 - Hassan requires a larger incision
 - Very thin:
 - Adjacent organs and vessels are closer to the abdominal wall
Port Pitfalls

PATIENT FACTORS
- previous surgery:
 - difficulty with Veress needle placement due to abdominal wall adhesions
 - limitations in insufflation
 - place trocar sites away from scars
- medical comorbidity:
 - may increase risk of wound infection
 - may result in variation in size and course of parietal blood vessels (ie. portal hypertension) and increase risk of vascular injury

Port Pitfalls

SURGEON FACTORS
- surgeon experience is very important in reducing port-site complications
 - experience = skill at accurate port placement, preventing inadvertent injury, and maximizing instrument ergonomics/minimizing OR fatigue
- adequate training is required

PORT DESIGN
- evolved and improved
- nonbladed trocars decrease port site wound complications

Port Pitfalls

Complications
- Vascular
 - incidence of major vascular injuries = 0.04 to 0.5%\(^1\)
 - most common → local hemorrhage from trocar
 - other injuries → iliac vein, greater omental vessels, IVC, aorta, pelvic and superior mesenteric veins, lumbar veins
 - transilluminate abdomen to avoid superficial vessels
 - always visualize inferior epigastric vessels

Port Pitfalls

Complications
- Vascular
 - radially expanding ports cause significantly less abdominal wall bleeding\(^1\)
 - injury to abdominal wall vessels usually occur due to position of secondary ports
 - remove ports under direct visualization
 - suture ligation is preferable over extensive diathermy
 - injured major vessel → convert to an open approach

Port Pitfalls

Complications
- Visceral
 - incidence of visceral injuries = 0.06 to 0.08%\(^1\)
 - most created by insertion of initial port
 - more common with adhesions
 - Bishoff et al. → 58% in small bowel, 32% in colon, 7% in stomach\(^2\)
 - early diagnosis → laparoscopic repair
 - delayed diagnosis → laparotomy
 - later presentations → perforation, abscess, enterocutaneous fistula, death

Port Pitfalls

Complications
- Hernia
 - incidence of incisional dehiscence and hernias = 0.02%\(^3\)
 - under reported → failure to diagnose, delay in diagnosis, patient tolerance of asymptomatic hernia, publication bias
 - avoid by → closing all ports >10mm, include peritoneum in musculofascial closure, use radially expanding ports or blunt ports that produce smaller defects

1. Munro MG. Curr Opin Obstet Gynecol 2002; 14:365-374
Port Pitfalls

- Complications
 - Wound Infection
 - uncommon, incidence = 0.2%\(^1\)
 - most are minor skin infections
 - treat with expectant management, drainage, or antibiotics
 - prevention → pre-operative antibiotics given within 30 minutes of incision, give second dose if surgery longer than 4 hours

- Wound Infection
 - uncommon, incidence = 0.2%\(^1\)
 - most are minor skin infections
 - treat with expectant management, drainage, or antibiotics
 - prevention → pre-operative antibiotics given within 30 minutes of incision, give second dose if surgery longer than 4 hours

Port Pitfalls

- Complications
 - Extra Peritoneal Gas
 - usually mild and limited to abdominal wall
 - due to malposition of insufflation port with CO\(_2\) gas tracking into preperitoneal, retroperitoneal, or subcutaneous spaces
 - can track into the neck, mediastinum, pericardium, can cause hypercapnea, respiratory acidosis, and cardiovascular collapse
 - treatment in severe cases and involves mechanical ventilation

- Extra Peritoneal Gas
 - usually mild and limited to abdominal wall
 - due to malposition of insufflation port with CO\(_2\) gas tracking into preperitoneal, retroperitoneal, or subcutaneous spaces
 - can track into the neck, mediastinum, pericardium, can cause hypercapnea, respiratory acidosis, and cardiovascular collapse
 - treatment in severe cases and involves mechanical ventilation

Port Pitfalls

- Complications
 - Neuropathies
 - ilioinguinal = sensation to inguinal canal
 - iliohypogastric = sensation to supapubic region
 - genitofemoral = sensation to labia and superior thigh
 - risk of injuring these nerves increases when trocars placed inferior to the ASIS
 - injury → sharp, burning pain, parasthesia

- Neuropathies
 - ilioinguinal = sensation to inguinal canal
 - iliohypogastric = sensation to supapubic region
 - genitofemoral = sensation to labia and superior thigh
 - risk of injuring these nerves increases when trocars placed inferior to the ASIS
 - injury → sharp, burning pain, parasthesia

The Future: Single Port?

- 1.8cm umbilical incision
- open technique to place multichannel single port
- 5mm flexible tip laparoscope
- articulating instruments
- LSC Vs. robotic LSC Vs. single port LSC\(^1\)
 - no difference in operative time, length of stay, subjective pain at discharge
 - post-operative POP-Q evaluations were similar at 3 and 6 months
 - mesh introduced paravaginally using Starney needles

Thank You
Deep Anterior and Posterior Dissection and Vaginal Graft Application
Abdominal Sacral Colpoperineopexy
Douglass S. Hale, M.D., FACOG, FACS
Female Pelvic Medicine and Reconstructive Surgery Fellowship
Indiana University Health System

Disclosures
- Relevant financial relationships exist with the following commercial interests:
 - Consultant: Women’s Health and Urology
 - Funded Research: Allergan

Objectives:
1. Review the anatomy of vaginal vault support
2. Understand the evolution of the abdominal sacral colpoperineopexy
3. Become familiar with the surgical steps for this procedure

Nomenclature
- Sacropexy
- Sacrocolpopexy
- Sacral colpopexy
- Colpopexy
- Colposacropexy
- Colpoperineopexy

PELVIC SUPPORT
- BONE
- MUSCLE
- "LIGAMENTS"
- FASCIA

LEVELS of SUPPORT
- Level 1
- Level 2
- Level 3

Intra-abdominal forces push the arch downward.

Sacral Colpopexy Evolution

- Single graft strip
- Cone around vaginal apex
- Double leaf graft
- Extension to perineal body
- 3 compartment with extensive vaginal coverage
 - Deep anterior (vesico-vaginal) and posterior dissection (recto-vaginal)

Standard Sacral Colpopexy

Timmons/ Addison Modification
Cone around entire vaginal apex

Timmons/ Addison Modification
Abdominal approach to perineal body
Perineal Attachment

Placement of abdominal sutures to complete posterior graft fixation

Anterior graft attached deep into vesicovaginal space

Posterior graft attachment completed
Video

Summary

1. TVH if indicated
2. Place sling if needed
3. May dissect spaces vaginally if performing a TVH
4. Lucite rods
5. Traction and counter traction

6. Use your eyes!
7. Wide dissections
8. Deep dissections
9. Retroperitonealize graft
10. Cystoscopy to check ureteral integrity
11. Antibiotic irrigation
Vesico-vaginal space dissection
- Lucite stent
- Foley bulb
 - May need to fill and drain bladder
- Shiny white muscularis
- To just above level of trigone
 - Fan retractor
- Wide placement with 1.5-2.0cm separation of anterior and posterior leaves laterally (may need to suture outside of mesh borders)

Recto-vaginal space dissection
- Lucite stent or stents
- Shiny white muscularis
- Laterally to levator ani
- Distally to rectovaginal septum or perineal body
- Wide placement with 1.5-2.0cm separation of anterior and posterior leaves laterally

Conclusions
- Abdominal sacral colpoperineopexy provides complete vaginal wall support.
 - Technique does make a difference
- It makes anatomic sense.
- Deep and wide application of mesh needed.
 - Mesh typically 4cm – 5cm wide
- Recent series of laparoscopic and robotic sacral colpopexies will impact the data, supporting a minimally invasive approach.
LSCP Suturing

Dr. Colleen D. McDermott MD, FRCSC
August 30th, 2011

Objectives
- Instruments
- Technique
- Vaginal Suturing
- Peritoneal Suturing
- Sacral Suturing

Instruments
- 5mm Needle Drivers x 3 (Ethicon)

Technique
- Suture Load:
 - Swage of needle at very tip of the needle driver
 - End of suture through closed knot pusher with snap on end
- Suture introduced through 12mm RLQ cannula by assist
- Needle passed through cannula with tip of needle facing up (anteriorly)
- Assist now ready to pass needle to surgeon

Instruments
- Extracorporeal Knot Tying
- Closed Versus Open Knot Pusher

Technique
- Forehand
 - Needle tip points anteriorly
 - Surgeon grabs needle in body of needle 1/3 of way from swage
Technique

- Backhand
 - Needle tip flipped 180°, points posteriorly
- Assist to throw stitch
 - Assist turns needle driver 90° counter clock wise so tip of needle is in plane of surgeon’s needle driver
 - Surgeon grabs tip of needle and rotates needle driver 90° either counter clock wise (forehand) or clockwise (backhand) → assist now set up to grab body of needle and throw stitch

Technique

- Stitch is placed and tied down
- Needle is passed back to assist
- Needle brought up through 12mm cannula under direct visualization
- Needle cut off and suture tied down using closed knot pusher
- Visualize each knot as being pushed into abdomen
- Suture cut through any available port

Vaginal Suturing

- Posterior Mesh
 - Attach first
 - Identify posterior graft and bring proximal end into abdomen so mesh is lying flat
 - If the abdominal-vaginal route used:
 - First stitch:
 - 2cm cephalad to highest stitch placed during vaginal portion of case
 - If only abdominal route used, place next suture approximately 2-4 cm cephalad to plane of ischial spines

Vaginal Suturing

- Posterior Mesh
 - Suture placed through rectovaginal fascia
 - Not full thickness, ie. vaginal epithelium not exposed to suture material
 - Pass needle with 180° torque of wrist rather than longitudinal movements
 - Once through skin → grasp needle tip, deliver remainder of needle to swage, reload needle, drive through mesh (anterior to posterior direction)

Vaginal Suturing

- Posterior Mesh
 - Suture grabbed by assist, pulled out of cannula, tied down
 - Tip: Lift posterior mesh up anteriorly so it lies against the vagina while knot being tied down, knot will then be posterior to mesh rather than between mesh and vagina
 - Left side → forehand throws
 - Right side → backhand throws
 - 3-4 pairs of sutures on either side of the mesh, 2cm apart
Vaginal Suturing

- Anterior Mesh
- Brought into abdomen
- Sutured in a similar fashion (3-4 pairs of sutures)

Suture Type
- Nonabsorbable sutures (2-0 Ethibond/polyethylene terephthalate with SH needle)
- Distal sutures for anterior mesh at level of the UVJ → 2-0 PDS/polydioxanone with SH needle
- Tip → 5mm fan retractor to keep bladder out of these distal sutures

Vaginal Suturing

- Sheppard et al. 1
- Retrospective
- ASC patients using 2-0 Ethibond (n=161) versus 2-0 PDS (n=254)
 - Significantly more mesh/suture erosions in Ethibond group (3.7% versus 0)
 - No difference in prolapse recurrence (1.7% Ethibond and 0% PDS)
 - Conclusion → PDS reduced the risk of mesh/suture erosion without increasing the risk of surgical failure

Peritoneal Suturing

- Peritoneum incised over sacral promontory down to vagina
- Pass temporary suture through medial cut edge of incised peritoneum (2-0 Ethibond)
- Pull needle back through cannula and cut off
- Pass two free ends back in abdomen

Pass Carter Thomason Close Sure device through RUQ (lateral to port) and retrieve both ends of sutures
- Bowel/sigmoid retracted to left side using suture as a “bowel hammock”
- Suture ends pulled up through anterior abdominal wall and snapped in place
- Alternatively, sigmoid epiploicae can be sutured to left side of anterior abdominal wall
Peritoneal Suturing

- Recommend closing peritoneum over mesh
- Reduce bowel adhesions to mesh and complications with bowel obstruction (although reports in the literature say the contrary\(^1\))
- Straightforward closure, 5-10 minutes
- 2-0 monocryl (poliglecaprone 25) on a CT-1 needle, run from sacrum down to vagina
- Identify right ureter to ensure not included in closure
- Use retention suture to guide closure then remove

\(^1\) Elneil S, et al. BJOG. Apr 2005;112(4):486-489

Peritoneal Suturing

- Distal end → first secured with a Lapra-Ty and needle then removed from abdomen
- Proximal end → suture pulled taught to close peritoneum over mesh, Lapra-Ty used to secure, suture cut and removed
- Gaps → close with figure-of-8 suture using 2-0 Monocryl
- Knotless barbed suture (V-loc)\(^1\)
 - Thubert et al.\(^2\) → small bowel volvulus
 - Time saving?\(^2\)

Sacral Suturing

- Most critical part of LSCP
- May be done by surgeon or assist
- 2 to 4 non-absorbable sutures (2-0 ethibond with SH needles)
- Find appropriate level for suturing on two straps of mesh
- First Suture
 - Through both straps of mesh
 - Through midline of anterior longitudinal ligament (vertebral level S1 to S2), medial retraction of sigmoid with free hand
 - Pass back through both straps of mesh again
 - Remove suture through cannula and tie knot extracorporeally

Sacral Suturing

- Sutures versus titanium helical tacks (Pro Tack device)
 - More secure (\(?)\)
 - Less expensive
 - Nosseir et al.\(^1\) → case of sacral osteomyelitis after insertion of tacks, without evidence of mesh erosion, abscess, or fistula

Thank You
Robotic-Assisted LASCP: Port Placement, Mechanics & Pitfalls
ICS Annual Scientific Meeting 2011
Glasgow, Scotland

Patrick J. Woodman, DO, MSCR; FACS, FACOOG
Associate Clinical Professor Obstetrics & Gynecology
Asst. Director Female Pelvic Medicine & Reconstructive Surgery Fellowship
Department of Obstetrics & Gynecology
Indiana University School of Medicine

Disclosure

• Although all care was taken to attempt to avoid commercial bias in this mini-lecture, there is only one Robotic system currently on the market for Robotic-assistance
• DaVinci (Intuitive Surgical, Sunnyvale, CA)

Background

• Abdominal Sacral Colpopexy (ASC)
 -Gold standard for vaginal apical prolapse
 -Greater postoperative morbidity than vaginal procedures

• Laparoscopic Sacral Colpopexy (LSC)
 -First reported by Nezhat et al, 1994

• Robotic-Assisted Laparoscopic Sacral Colpopexy (RLSC)
 -Initial description by DiMarco et al, 2004

DaVinci Benefits

• Less need for pain medication
• Less blood loss and fewer transfusions
• Fewer complications and lower conversion rate
• Shorter hospital stay
• Quicker recovery and fast return to normal daily activities

Port Placement – Evolution

- 12 mm accessory port
- 8 mm robotic arm port
- 12 mm camera port
- 5 mm accessory port
- 8 mm robotic arm port

Surgical Technique

- Dorsal lithotomy with shoulder restraints
- Vaginal rectocele – Performed if indicated
- Pelvicol attached to perineal body
- Laparoscopic dissection retroperitoneum
- Anterior deep dissection
- Laparoscopic attachment of anterior & posterior grafts to the vagina

Porcine Dermis / Soft Prolene grafts
Surgical technique – Mechanics

- Both mesh leafs secured tension free to the sacrum
- Polypropylene graft is retroperitonealized
- Port site fascial defects >7mm closed
Typical Results

Retrospective chart review

May 2003 to October 2005 (n=77)

<table>
<thead>
<tr>
<th>POPQ Stage</th>
<th>Anterior Wall</th>
<th>Posterior Wall</th>
<th>Vaginal Vault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>3</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>Stage 2</td>
<td>27</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Stage 3</td>
<td>37</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Stage 4</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Complications

- 7 (9%) with erosion – 3 (4%) to OR
- 5 (6.5%) incidental cystotomy
- 5 (6.5%) post-op ileus
- 4 (5%) had de novo SUI, subsequent TVT
- 2 (2.6%) c. diff collitis
- 2 (2.6%) fever from UTI
- 1 (1.3%) with prolapse to introitus
- 1 (1.3%) converted to laparotomy
Post-op Symptom Evaluation

<table>
<thead>
<tr>
<th>Post-op</th>
<th>1 yr da Vinci (n=53)</th>
<th>1 yr ASC (n=45)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvic Pain</td>
<td>3 (5.7%)</td>
<td>6 (13.3%)</td>
<td>0.294</td>
</tr>
<tr>
<td>Pain with Intercourse</td>
<td>5 (9.6%)</td>
<td>4 (8.9%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Prolapse Symptoms</td>
<td>3 (5.7%)</td>
<td>5 (11.1%)</td>
<td>0.464</td>
</tr>
<tr>
<td>New Incontinence</td>
<td>3 (5.7%)</td>
<td>5 (11.1%)</td>
<td>0.466</td>
</tr>
<tr>
<td>Go through Surg Again</td>
<td>50 (94%)</td>
<td>33 (73.3%)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Pitfalls

- Arm conflict
- Training
 - Pay for Training: Pig Lab, Observe 7 Proctor
 - (20) procedures/y to be listed as Provider
- With this hammer, everything looks like a nail
- Training & availability of special OR team
- Expense of Unit & Service Contract

Conclusions

Laparoscopic robotic assisted sacral colpoperineopexy

- Robotic technology is reliable
- Low conversion rate to laparotomy
- Low complication rate

Future studies

- Long term vaginal support
- Economic analysis
- Quality of life

Questions?
Concomitant Urinary Incontinence Surgery

Douglass S. Hale, M.D., FACOG, FACS
Director Female Pelvic Medicine and Reconstructive Surgery Fellowship
Indiana University Health System

Disclosures
• Relevant financial relationships exist with the following commercial interests:
 – Consultant: Women’s Health and Urology
 – Funded Research: Allergan

Objectives
1. Review the data for incontinence surgery combined with prolapse surgery for occult urinary incontinence.
2. Suggest treatment options for patients with occult stress urinary incontinence.

Occult Incontinence
• Few studies to guide decisions
 – Anti-Incontinence procedure or not
• Defining “occult incontinence”
 – Reduction
 – Type of reduction
 – Catheters
 – Bladder volume

Clinical relevance of urodynamic investigation tests prior to surgical correction of genital prolapse: a literature review Roovers. Int Urogynecol J (2007) 18:455–460
• 1,467 references in Medline

Clinical relevance of urodynamic investigation tests prior to surgical correction of genital prolapse: a literature review Roovers. Int Urogynecol J (2007) 18:455–460
• Patients with genital prolapse and urodynamic stress incontinence before surgery
 – Diagnostic value of urodynamic investigation
 • Stress incontinence is present in about 40% of all patients with genital prolapse. According to a Cochrane review, 25–30% of the women with stress incontinence do not have urodynamic stress incontinence
 – Therapeutic value of urodynamic investigation
 • Combining procedures reduces the risk on stress incontinence after surgery but increases the risk on voiding dysfunction.
Clinical relevance of urodynamic investigation tests prior to surgical correction of genital prolapse: a literature review Roovers, Int Urogynecol J (2007) 18:455–460

- Patients with genital prolapse and occult urodynamic stress incontinence before surgery
 - Diagnostic value of urodynamic investigation
 - Stress incontinence is absent in about 60% of all patients with genital prolapse.
 - 36 to 80% of these women are at risk for development of stress incontinence after reconstructive surgery.
 - Therapeutic value of urodynamic investigation
 - If barrier tests are negative, the risk on developing stress incontinence after surgery is believed to be very low. (7)
 - Continence rates in the six studies ranged from 86 to 100%. De novo detrusor overactivity ranged from 6 to 30%.

- Assess whether the addition of standardized Burch colposuspension to abdominal sacrocolpopexy for the treatment of pelvic organ prolapse decreases postoperative stress urinary incontinence in women without preoperative symptoms of stress incontinence.
- The primary outcomes included measures of stress incontinence (symptoms, stress testing, or treatment) and measures of urge symptoms.

- Results
 - 322 women randomized (157 Burch, 165 controls)
 - Enrollment stopped after 3 month interim analysis
 - 44.1% in control met criteria
 - 23.8% in Burch group
 - Bothersome
 - 24.5% control
 - 6.1% Burch
 - OAB
 - 38.4% control
 - 32.7% Burch

- Conclusion
 - In women without stress incontinence who are undergoing abdominal sacrocolpopexy for prolapse, Burch colposuspension significantly reduced postoperative symptoms of stress incontinence without increasing other lower urinary tract symptoms.

- Evaluate the use of urodynamics to determine the need for incontinence surgery at the time of abdominal sacrocolpopexy (ASC).
- “Our philosophical belief is to consider USI and occult USI to be 1 entity.”
Abdominal sacrocolpopexy and urinary incontinence: surgical planning based on urodynamics

- Post op incontinence if there was any comment of incontinence on the chart as recorded by any health care practitioner.
- Similarly, a patient was considered to have urgency/frequency (UF) if she subjectively reported having UF either volunteering the information on intake or responding positively when questioned.

Results

- 441 charts
 - 204 with USI (82 with occult)
 - 237 without USI

Conclusions

- Recommend results of urodynamic testing should be used to selectively treat incontinent women with a sling or Burch at the time of ASC.
- Recommend that patients without stress incontinence should not undergo an antiincontinence procedure at the time of ASC.
- Adding an unindicated procedure to benefit a minority of patients seems unacceptable.

Prolapse Surgery and Negative Reduction Testing

- Patients undergoing Prolift – 355 patients
 - 244 (71%) combined anterior and posterior mesh
 - 66 (20%) underwent anterior mesh only
 - 23 (8%) underwent posterior mesh only
 - 309 underwent urodynamics
 - 111 were stress continent
 - 27 (24.3%) with de novo stress incontinence

Prolapse Reduction Method

- Urodynamic stress incontinence without prolapse reduction
 - 12 of 313 (3.7%)
- Overall, at 300-ml bladder volume, with prolapse reduction
 - 27% (78/293) of subjects leaked during reduction testing with either the first or the second assigned method.
 - More women leaked after the second method of reduction (65/291 = 22%) than after the first (47/293 = 16%; p = 0.012).
- Overall, urodynamic stress incontinence with barrier reduction was diagnosed in 19% of subjects (112/584)
 - pessary having the lowest rate of detection (6%)
 - speculum the highest (30%).

Prolapse Reduction – Occult Incontinence

<table>
<thead>
<tr>
<th>Method of reduction</th>
<th>% leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pessary</td>
<td>6% (5/88)</td>
</tr>
<tr>
<td>Manual</td>
<td>16% (19/122)</td>
</tr>
<tr>
<td>Swab</td>
<td>20% (32/158)</td>
</tr>
<tr>
<td>Forceps</td>
<td>21% (21/98)</td>
</tr>
<tr>
<td>Speculum</td>
<td>30% (35/118)</td>
</tr>
</tbody>
</table>

The use of the pessary test in preoperative assessment of women with severe genital prolapse
Liapis, European Journal of Obstetrics & Gynecology and Reproductive Biology 155 (2011) 110–113

- Prospective Stg III + IV urogenital prolapse
- No symptoms of UI and + occult stress test (pessary)
 - Group I (43 pts) – TVH, A+P repair, TVT-O
 - Group II (39 pts) – TVH, A+P repair

OAB Persistent/ De Novo Following Sling

- 5% to 25% of women will report persistent, worsening, or de novo OAB after sling surgery
Conclusions

- Discuss possibilities with your patient
- Making an asymptomatic patient symptomatic (either de novo urge or stress) is one of greatest patient dissatisfiers

Conclusions

- Options USI (or occult) and Prolapse
 - Two stage
 - Perform anti-incontinence procedure
 - Risk of OAB/VD
- Options for No Stress Leakage with Prolapse Reduction
 - Colpopexy 13.3% (Elser) - 18.6% (Park) - 38% (CARE)
 - TVM – 24-25% leakage
ADDITIONAL READING:

discussion on hysterectomy at the time of LASCP, and ample opportunity for audience participation and questions. Finally, the evidence-based medical literature will also be reviewed.

Educational Objectives

Key Learning Points:
1. To review the pertinent anatomy pursuant to laparoscopic pelvic reconstructive surgery.
2. To discuss the advantages and disadvantages of laparoscopic repairs.
3. To describe the Laparoscopic Abdominal Sacralcolpoperineopexy (LASCP) technique, with and without Robotic Assistance, as well as reveal laparoscopic “pearls” to make the job easier.
4. To review the evidence-based literature about these repairs
5. To answer the question: "The uterus: does it need to come out?"
6. To discuss the addition of concomitant procedures to the LASCP.

Take-Home Messages:

1. Once laparoscopic knot-tying is mastered, there are few hurdles to incorporating LASCP into your practice.
2. Laparoscopic approaches offer benefits of lower blood loss, quicker short-term and long-term convalescence, better visualization and improved retraction, for the drawbacks of added expense and time. However, offering "minimally-invasive" options can drive referrals and advertising.
3. Type I (knitted, open pore) meshes offer superior characteristics for pelvic reconstruction.
4. Fear of mesh erosion should not keep you from using mesh to augment a prolapse repair in the appropriate patient.
5. There are several specialized and improvised devices available that can assist in laparoscopic procedures. Graft materials, port placement, instrumentation, technique, and other tips and tricks can help you complete your surgery and keep you out of trouble.

E-mail Contact Information on Presenters:
Patrick J. Woodman, DO, MSCR pwoodman@iuhealth.org
Colleen D. McDermott, MD, MSCR colleen.mcdermott@utoronto.ca
Douglass S. Hale, MD dhale@iuhealth.org