W18: Biological Materials in Female Pelvic Floor Reconstruction. What's New
Workshop Chair: Ajay Singla, United States
27 August 2013 09:00 - 12:00

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Topic</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>09:30</td>
<td>Biochemical evidence in tissue repair</td>
<td>• Ajay Singla</td>
</tr>
<tr>
<td>09:30</td>
<td>10:00</td>
<td>What does research say about biological materials</td>
<td>• Dirk de Ridder</td>
</tr>
<tr>
<td>10:00</td>
<td>10:30</td>
<td>Clinical evidence in use of biological materials</td>
<td>• Rahmi Onur</td>
</tr>
<tr>
<td>10:30</td>
<td>11:00</td>
<td>Break</td>
<td>None</td>
</tr>
<tr>
<td>11:00</td>
<td>11:30</td>
<td>Mesh complications</td>
<td>• Paulo Palma</td>
</tr>
<tr>
<td>11:30</td>
<td>11:45</td>
<td>FDA warning and case for concern</td>
<td>• Amit Chakrabarty</td>
</tr>
<tr>
<td>11:45</td>
<td>12:00</td>
<td>Discussion</td>
<td>All</td>
</tr>
</tbody>
</table>

Aims of course/workshop

The aim of this workshop is to familiarise the audience regarding various biological materials including synthetic meshes which are in use in female pelvic floor reconstruction. What are the complications observed and status of FDA warning.
“Bio”-meshes

Dirk De Ridder
Jan Deprest
Interdepartemental Center for Surgical Technologies
Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium

Our laboratory has been supported by unconditional grants from Bard, Cook, Tyco, Ethicon, AMS

Implants

Xenografts
End 1990s
FDA approved for urogynaecology
CE marked

Non-cross linked
Small intestinal submucosa « SIS »
InteXen (LP)

Cross linked
Pelvicol
Pelvisoft

different host response, local side effects and durability?

In vivo animal studies

Rat (3-90 d) and rabbit model (30d-2 yrs)
Xenografts – experimental data

Host response to acellular collagen matrix

- Weak inflammatory response
- Less pro-inflammatory profile
- Poor integration
- Poor vascularization and collagen deposition

polypropylene provokes "pro-inflammatory" response = rejection
xenografts induce anti-inflammatory cytokines = "tolerance"

Image:
- H&E stain
- Immunohistochemistry specimens @ 7d
- PCR

Pelvicol

Image:
- Pelvicol
- Prolene
- TNF-α
- INF-γ

PCR:
- IFN-γ
 - 459bp
- HPRT
 - 162bp

Image:
- Zheng. 2004, 2005
- Konstantinovic, et al 2005

Image:
- Xenografts

Image:
- Defect
- Explant
- Native tissue
- Implant
- Implantation
- Time
- 7 14 30 90 days

Image:
- Xenografts

Image:
- Xenografts

Image:
- Xenografts
Tensiometry of explant (in vivo)

4467 Instron tensiometer
Specimen: 1 x 5 cm
Crosshead speed: 2 cm/ min
Measurement:
 maximum load to disrupt (N)
Location of disruption:
 in mesh
 or at interface

Uni-directional stress/strain plot

Main purpose:
 failure level
 Determination of Stress
 Strain
 Stiffness

Elastic area E is measure of slope
Plastic area Permanent deformation

Cross linked products

Structure of implant

InteXen

Pelvisoft

Non-cross linked products

Tensile strength explants

Breaking point Intexēn LP

Ozog and Konstantinovic – 2006-2008

Experimental long term studies

Clinical reherniation
Rabbits - explant strength

- Overall comparable performance
- Herniations in both bio-groups
- 25% of SiS implants tear at the implant
- Loss of elasticity

Trabuco et al, AJOG 2008

long term inflammatory changes

Conclusions - 1
Xenografts “ideal template” for remodelling?

- Experimental evidence for induction different host response
- Non-cross linked materials
 - Poor early tensiometric resistance
 - Also disrupt more easily in the implant
- Cross linked
 - Stronger on tensiometry
 - Occasional degradation and loss of elasticity

Ideal biomesh not designed yet
Clinical data – anterior compartment

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Pelvicol</td>
<td>15.0 mo</td>
</tr>
<tr>
<td>24</td>
<td>Ant colp</td>
<td>12.0 mo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>SIS</td>
<td>24.0 mo</td>
</tr>
</tbody>
</table>

Leboeuf 1999

Urol 2004 Consec cases

Chaliha 2005

Int J Urogynaecol 2005 Case control study

Meschia 2007

Urol 2007 Randomized trail

Clinical data – anterior compartment recurrences

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Anterior Stage II</th>
<th>Anterior Stage III</th>
<th>Mid</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Pelvicol</td>
<td>6.9%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>24</td>
<td>Ant colp</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Leboeuf 1999

Urol 2004 Consec cases

Chaliha 2005

Int J Urogynaecol 2005 Case control study

Meschia 2007

Urol 2007 Randomized trail

* Ba >1

Meta-analysis

![Meta-analysis image](attachment:image.png)

Adjuvant materials in anterior vaginal wall prolapse surgery: a systematic review of effectiveness and complications

Richard Fear, Philip Sapsin-Brosman, P. M. Lurie

Int Urogynecol (2006) 17:171
Sacrocolpopexy using xenografts

- **Observational cohort study**
 - Consecutive laparoscopic sacropexies
 - 50 xenografts
 - 21 SIS, 29 Pelvicol
 - 100 polypropylene
 - 50 before the cases
 - 50 after the cases

Follow up
- Yearly telephone interview (Kobashi, 1991)
- 95% clinical assessment for study (Claerhout, 08)
- POP-Q, QoL (Kings)

Claerhout et al, Europ Urol 2008

<table>
<thead>
<tr>
<th>@ 32 months follow up</th>
<th>SIS (21)</th>
<th>Pelvicol (29)</th>
<th>Polypropylene (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective failure (C≥-1)</td>
<td>22%</td>
<td>19%</td>
<td>3%*</td>
</tr>
<tr>
<td>Reoperation vault prolapse</td>
<td>2 (10%)</td>
<td>3 (10%)</td>
<td>0 (0%)*</td>
</tr>
<tr>
<td>Infection/exposure</td>
<td>2 (10%)</td>
<td>2 (10%)</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>Reoperation GRC</td>
<td>0</td>
<td>1 (3.5%)</td>
<td>7 (7%)</td>
</tr>
</tbody>
</table>

Comparable demographics - no significant functional differences in prolapse, urinary, defecation and sexual function

(Deprest et al, submitted Obstet Gynecol 2008)

Time to recurrence
- PP: 14 mo
- SIS 30 mo
- Pelvicol: 24 mo
Clinical data – vault

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Pelvicol</td>
<td>1.1 yr</td>
</tr>
<tr>
<td>134</td>
<td>Polyr</td>
<td>1.1 yr</td>
</tr>
<tr>
<td>23</td>
<td>Fascia</td>
<td>1.1 yr</td>
</tr>
<tr>
<td>25</td>
<td>Polyr</td>
<td>7.1 mo</td>
</tr>
<tr>
<td>27</td>
<td>Pelvicol</td>
<td>7.1 mo</td>
</tr>
</tbody>
</table>

Recurrences

Quiroz et al

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
<th>Vault recurrence</th>
<th>anterior</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Pelvicol</td>
<td>1.1 yr</td>
<td>11%* (8% reop)</td>
<td>7 %</td>
<td>3 %</td>
</tr>
</tbody>
</table>

Am J Obstet Gynecol 2006

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
<th>Vault recurrence</th>
<th>anterior</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>Polyr</td>
<td>1.1 yr</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Retrospective study

Mean follow up: 1.1 yr

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
<th>Vault recurrence</th>
<th>anterior</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Fascia</td>
<td>1.1 yr (1/15)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Altman et al

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow up</th>
<th>Vault recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Polyr</td>
<td>7.1 mo</td>
<td>24%</td>
</tr>
<tr>
<td>27</td>
<td>Pelvicol</td>
<td>7.1 mo</td>
<td>29%</td>
</tr>
</tbody>
</table>

Clinical data – posterior compartment

<table>
<thead>
<tr>
<th>N</th>
<th>Product</th>
<th>Follow Up</th>
<th>posterior Stage II*</th>
<th>Local problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Posterior repair</td>
<td>17.5 mo</td>
<td>17.5 mo</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Site specific repair + SIS augment</td>
<td>17.5 mo</td>
<td>17.5 mo</td>
<td></td>
</tr>
</tbody>
</table>

Randomized trial

| N | Site specific repair + SIS augment | 17.5 mo |

Conclusion

- No graft complications
- Faster and more severe failure with graft

* Bp ≥-2
Conclusions - 2

- The results are at present conflicting
 - Even RCT material typically dubious in nature
 - Variety of materials and techniques
 - Inherent short follow up with new material
- Anterior: argument for graft augmentation
 - Underpowered for functional benefit
 - Same results with synthetic material (absorable) - €
- Middle and posterior: point not proven
 - Local complications not included
 - Point at importance of long term follow up for anatomical endpoint
 - Even arguments against...

(These) materials should be used within trials
(? PRIOR TO THEIR SALES ?)
1. **Biomaterials in Female Pelvic Floor Reconstructive Surgery**
 Ajay K Singla, MD, FACS, FICS
 Associate Professor
 Department of Urology and Gynecology
 Wayne State University

2. **Total Female Population In U.S.**
 - 20 million 30-39 years
 - 21.4 million 40-49 years
 - 15.8 million 50-59 years
 - 10.7 million 60-69 years
 - Total procedures per year 180,000

3. **Incontinence - Incidence**
 - 6.5 million women in US has SUI
 - 10-35% of women 15-54 years age
 - 30-50% of women over 60 years age
 - 15-20% of women with recurrent SUI
 - 15-20% of women with urge incontinence or other dysfunction following surgery
 - De novo urge incontinence in 10%-30%
 - Bladder outlet obstruction in 2.5%-24%

4. **Cost of Incontinence**
 - $23.9 billion for evaluation & treatment
 - $4.2 billion for Home Health Care associated with incontinence
 - Total of $28.1 billion spent on incontinence in 1995 in United States

5. **SUI Surgery Prevelance**
 - prevalence of in-patient SUI surgery US \(^1\)
 - 48,345/yr 1979
 - 135,000/yr 1998
 - 103,467/yr 2004
 - ASC visits for SUI \(^2\)
 - 15/100,000 1994
 - 34/100,000 2000

6. **Prevelance of Pelvic Organ Prolapse (POP) Surgery**
 - prevalence of vaginal prolapse surgery US \(^1,^2\)
 - >200,000/yr
 - 29% reoperation rate within 4 yr
 - Life time risk to undergo surgery for POP/SUI 11.1% \(^2\)

7. **Science Behind Biomaterial Use**
 Pelvic organ support & Continence rely on:
Endopelvic fascia
Ligament support
Pelvic floor muscles

8 Biochemical basis for Pelvic floor support
connective tissue fibroblast

- collagen type I & III
- compliance
- elastin
- tensile strength & flexibility
- fiber stabilization
- cross linking proline & hydroxyproline amino acids

9 Science Behind Biomaterial Use

- Decrease in total collagen content in women with POP and SUI as compared to controls
- Increase in matrix metalloproteinase (MMP) – a collagen degradation enzyme
- Decrease inhibitors of MMP expression in vaginal tissues
- Increase in degradation of elastin in women with POP and SUI
- Decrease in alpha1-antitrypsin mRNA level – elastin degradation inhibitor

10 Historical Perspective

- Goebel 1910 Pyramidalis Ms
- Price 1933 Rectus fascia (attached)
- Aldridge 1942 Rectus fascia strips (paired)
- McGuire 1978 Rectus fascia
- Blavais 1991 Fascial strip (free)
- Beck 1988 Fascia Lata
- Raz 1989 Vaginal wall
- Handa 1996 Cadaveric fascia Lata

11 Types of biomaterials

- Absorbable
 - Autograft (autologous)
 - Allograft
 - Xenograft
 - Absorbable synthetic mesh

- Non-absorbable
 - Synthetic mesh

12 Autograft

- Rectus fascia
- Fascia lata
- Rectus muscle
- Gracilis muscle
- Vaginal mucosa

13 Allograft

- Fascia lata
 - FasLata
 - Suspend
- Dermis
 - Urogen
 - Axis
 - Repliform
 - Dermal Allograft

Xenograft
- Porcine dermis
 - DermMatrix
 - Pelvicol
- Porcine SIS
 - Stratisis
 - FortaFlex
 - FortaPerm
- Bovine pericardium
 - Veritas

Types of Synthetic Mesh
- Absorbable
 - Vicryl (polyglactic acid)
 - Dexon (polyglycolic acid)
- Non-absorbable
 - Nylon
 - Silastic
 - Dacron (mersilene)
 - Marlex
 - Gore-Tex
 - Prolene

Synthetic material
- Pore size (macroporous vs microporous)
- Construction (monofilament vs multifilament)
- Weave (woven, knitted, thermal bonded)
- Flexibility or elasticity
- Additives or coatings (silicone, antibiotics, collagen)

Most meshes manufactured for sling surgery are:
Monofilament, loosely woven or knitted, elastic, macroporous polypropylene (standard of care)

Classification of Synthetic Mesh
- Type I – macroporous / monofilament
 - Atrium, Marlex, Prolene and Trelex
- Type II – microporous / multifilament
 - Gore-Tex
- Type III – macroporous with multifilament
 - Teflon, dacron (mersilene), woven polypropylene and PTFE
- Type IV – Mesh with submicronic pores coated with silicone
 - silastic, cellgard, dura substitute

History of Cadaveric fascia
- More than 200,000 soft tissue allograft transplants done annually in US
Cadaveric fascia has been in clinical use for 3 decades
- Ophthalmological uses
 - Orbital floor reconstruction
- Orthopedic uses
 - Anterior cruciate ligament repair

19 Donor Screening
- HIV 1&2 Ab
- Hepatitis B Ag & Ab
- Hepatitis C Ab
- HTLV 1/11 Ab
- Syphilis
- HIV DNA by PCR

20 Tissue Processing
- Most common: Freeze dried (Incubation in 70% isopropyl alcohol → Frozen → gamma irradiation @ 25 Kgy)
- Freeze dried (Urogen, FasLata, Dermal allograft, Stratisis, Repliform)
- Fresh Frozen (DermMatrix, Stratisis)
- Solvent dehydrated and gamma irradiated (suspend and axis tutoplast)
- Cryopreservation and amorphous freeze drying (Repliform)

21 Processing and Strength
- Sutaria and Staskin:
 - Comparison of tensile strength between freeze dried alone, freeze dried and gamma irradiated, solvent dehydrated-gamma irradiated
 - No statistical difference was noted using tensiometer

J Urol 163A 1194,2000

22 Tissue strength
- Lemer et. Al:
 - Maximum load to failure (MLF), stiffness assessed in autologous, freeze-dried, solvent dehydrated fascial grafts and dermal graft using tensiometer
 - MLF and stiffness equivalent in autologous and solvent dehydrated fascial graft and dermal allografts
 - Freeze dried allografts had lower MLF and were less stiff

Neurourol 18:497,1999

23 Tissue Strength
- Choe et. al:
 - Comparison of tensile strength (MLF) between allograft (freeze-dried gamma irradiated cadaveric fascia lata, cadaveric dermis), autologous (dermis, rectus fascia, vaginal mucosa) and synthetic (Gore-tex and prolene) mesh using tensiometer.
 - Cadaveric fascia lata > cadaveric dermis > Gore-tex > prolene > human dermis > human rectus fascia > vaginal mucosa.

UROLOGY 58(3),2001
Safety of Cadaveric tissue

- Risk of HIV transmission from blood transfusion
 - 1/400,000 to 1/600,000
- Risk of HIV transmission from donor tissue
 - 1/1,667,600

- One documented case of HIV transmission from bone allograft in 1985

Safety of Cadaveric tissue

- Prions ("slow virus"):
 - Naturally occurring protein molecules located in CNS
 - PrPc prions are mutated due to infectious agent
 - Originally discovered after cannibalistic tribe in New Guinea found to die from progressive destructive brain disease.

Prion diseases

- Kuru
- Creutzfeldt-Jacob
- Scrapie
- BSE (mad cow)
- vCJD (injected tainted beef)

- Risk of transmission unknown

Prion diseases

- No known cure
- Inactivation is resistant to
 - Heat exposure
 - Gamma irradiation

- Alkaline treatment is thought to inactivate prions

Bacterial Contamination

- Study of 36 women undergoing cadaveric fascia lata sling
 - Cultures of allograft sent immediately prior to surgery:
 - 5/36 grew organisms
 - One developed superficial wound infection
 - Clinical significance of these findings unclear

 Gerber, et.al,Urol 163A:735,2000

DNA contamination

- 4 different types of human fascia lata allograft, all processed by 4 different techniques extracted for DNA content.
- Total DNA concentrations ranged from 0.3 – 3.0 mcg/mg tissue

 Sadhukhan et.al. J Urol 161A:396,1999

Tissue Reaction
30 female rabbit bladders exposed to
- Synthetic sling vs. cadaveric fascia vs. control
- Histologically examined at 6 and 12 weeks

Tissue Reaction

Cadaveric fascia failure
- 12 women failed cadaveric fascia (12%)
 - Allografts were freeze dried and irradiated
 - 3x10 cm strips used for PVS in 35 women
 » 6 failed (1 week to 4 months)
 - 6x16 cm strips used for sacrocolpopexy (67)
 » 6 failed (7–11 months)

Cadaveric fascia failure
- Findings at re-operation:
 - Graft remnants found in 7 patients
 » Often thin and attenuated
 - No tissue found, only suture in 5 patients

Cadaveric fascia failure
- Histology:
 - Some areas with appropriate remodelling, linear orientation of fibrocytes within connective tissue, except high tensile strength
 - Other areas haphazardly arranged, non-inflammatory scar-like tissue, some areas with inflammatory response, still other areas with tissue degeneration.

Allograft Concerns
- Transmission of bacterial or viral disease
- Transmission of prions
- Durability
- Degradation of allograft
- Inconsistent quality from some tissue banks
- Cost
- Depletion of tissue banks
- Increased operative time and patient morbidity
- Unpredictable host response

Synthetic Material
- Type of Material:
 - Monofilament
 - Prolene
 - Multifilament
 - Mersilene
 - Gore-tex
*Bacteria enter into multifilament
*Macrophages and PMN's cannot

37 Synthetic Material

- Pore Size:
 - Larger pores > tissue bonding
 - Prolene > mersilene > marlex > Gore-tex

38 Synthetic Material

- Advantages:
 - Abundant – “off the shelf”
 - Decreased operative time
 - Durable – permanent
 - Cost – inexpensive
 - Independent of tissue re-modeling
 - Resistant to degradation
 - Long term preservation of tensile strength

- Risks:
 - Infection
 » Prolene 0-3%, Mersilene & Gore-tex 5-23%
 - Erosion
 - Failure of remodeling

39 Ideal Material

- Biocompatible
- Acellular
- Abundant collagen
- Abundant elastin
- Preserved extracellular matrix
- High tensile strength
- Durable
- Free of infection and erosion
- Inexpensive

40 Applications In Urology

- Sling surgeries in women for SUI
- Sling surgeries in men for SUI
- Pelvic floor reconstruction in women
- Urethral reconstruction in men
- Penile reconstructive surgeries
- Bladder reconstruction/replacement ?

41 Future Sling Materials

- Hybrid Sling Materials
 - Combination of allograft and synthetic material
 - Combination of xenograft and synthetic material

- Engineered Tissues
Methodology

We evaluated 4 different sling materials
- Small intestinal mucosa (SIS) (Cookbiotech)
- Fascia lata (FL) (Coloplast Corp)
- Fascia dermis (FD) (Coloplast Corp)
- Pelvicol (P) (C.R.Bard)

All currently used in patients clinically

Methodology

Biomaterial was implanted intraperitoneally at the bladder neck of female Balb/c mice (n = 64)

Animals were sacrificed at 2, 4, 8, or 12 weeks post-implantation

Bladder and implants were extracted and fixed for histological analysis

Methodology

Implant Histological Analysis:

- Cell Count (cells/μm²)
- Cell Morphology (aspect ratio)
- Capsule formation (collagen deposition)
- Capsule thickness (μm)
- Angiogenesis (CD31)

Capsule Thickness:
2 Weeks Implantation

Capsule Thickness:
12 Weeks Implantation

Cell Number

None of the implants displayed a significant change individually in cell number during the 12 weeks

However, Pelvicol had significant decrease in cell number as compared to all other groups

Cell Morphology

Aspect ratio correlates with cell morphology
- Smaller round cells indicate inflammatory cells
- Longer cells indicate a fibroblastic type of cell

At specific time points there was significance between groups

However, no implant had a significant change over the 12 weeks
Capsule Thickness

- Capsule thickness generally measures the severity of the inflammatory response
- SIS was the only group to show a significant decrease in capsule thickness over 12 weeks
- P had thinnest capsule at all time points

Capillary Formation at 12 Weeks

Angiogenesis

Summary

Conclusion

- Important for a graft to become incorporated as endogenous tissue and not lead to encapsulation
 - Angiogenesis allows for cells and nutrients to enter the matrix and ultimately implant survival.
 - At 12 weeks, SIS demonstrated minimal implant encapsulation and complete cell infiltration throughout the implant
 - Indicating improved biocompatibility as compared to the other tissues

Conclusion

- In comparing biological tissues for pelvic reconstruction we were able to assess the biocompatibility within the urological environment

- Through commercial processing, tissues are claimed to be devoid of cells
 - However, other antigens may be present which elicit inflammatory reactions, thus limiting the implant incorporation and use for long term urological therapies.

In Vivo comparison of biomaterials in rabbit model

- Cadaveric fascia lata
- Porcine SIS
- Porcine dermis
- Autologous
- Polypropylene mesh

In Vivo comparison of biomaterials in rabbit model

- Tensile strength (force required to break)
- Stiffness (force required to stretch sling)
- Shrinkage (% decrease in surface area)
- Distortion (ratio of the area of sling to the area of its minimal enclosing rectangle-rectangular fit factor)

In Vivo comparison of biomaterials in rabbit model

- At 12 weeks tensile strength and stiffness were greatly decreased from baseline in all materials except polypropylene mesh and autologous fascia.
- Polypropylene mesh gained stiffness with time.
- Autologous fascia and SIS experienced significant shrinkage at 12 weeks.
Autologous fascia became highly distorted at 12 weeks.

conclusions

- Significance of tensile strength is unknown
- Stiffness is more important than tensile strength.
- The stretching of a sling with time is more likely scenario than breakage and may be responsible for the recurrence of incontinence
- Low tensile strength may explain difficulty in manipulating sling tension for recurrent incontinence
- Stiffness of mesh increased with incorporation of surrounding tissue
- The biomechanical results support the use of polypropylene mesh for sling surgery relative to other non-autologous materials.

NICE Review

Objective Failure Rate

Objective Failure Rate

Failure rate for anterior prolapse

- No mesh – 28.8%
- Synthetic non-absorbable mesh – 8.5%
- “The objective failure when using non-absorbable synthetic mesh was significantly lower than without mesh/graft”

Low Rate of Erosion

Erosions

- Clearly a risk – 10% in literature
- With better surgical technique/more care with the vaginal wall dissection current studies demonstrate a much lower incidence – 2.5%

How well do we do with traditional prolapse repairs?

- Randomized trial
- Median follow up of 23 months
- Findings – Success rates
 - Anterior plication – 30%
 - Plication with absorbable mesh – 42%
 - Ultralateral plication – 46%
- Many of these did not require further repair
- But - What will happen at 5 or even 10 years?

Why such a high failure rate?

- Tissue Factors
 - Multiple studies show differences in tissue between women with prolapse and those without – vaginal tissue, skin and other sites

Why such a high failure rate

- Tissue Factors
 - Multiple studies show differences in tissue between women with prolapse and those without – vaginal tissue, skin and other sites

Thus – are we really helping by suturing weakened, possibly defective tissue back
together?

Paradigm of General Surgery: Hernia Repairs
- For decades inguinal and abdominal wall hernias were repaired by suturing native tissue to native tissue
- More recently many have started to use synthetic mesh with improved results
- Can we follow this paradigm?

Mesh Repair - Kits

Outcomes
- National Institute for Health and Clinical Excellence (NICE) report
 - Provides national clinical guidelines in the United Kingdom
- Examined surgical repair of vaginal prolapse using mesh
- 199 page document
- Evaluated 446 reports - 49 studies selected
- 4569 patients in total

Poor Surgical Outcome with Allograft

Failure of Allograft
- Variable host response
- Method of tissue processing
- Site of harvest
- Quality of harvested graft

Small intestinal submucosa (SIS)
- Prepared from submucosa of small intestine of pigs and is replaced by host tissue in 90-120 days
- SIS contains
 - Collagen
 - Growth factors
 - Transforming growth factor- alpha
 - Fibroblast growth factor-2
 - Glucosaminoglycans
 - Glycoprotein
- Minimal tissue reaction
- Biocompatible
- High tensile strength

SIS in Pubovaginal Sling
Literature Review
Cells grown in tissue culture on matrix to create sling fascia and SIS experienced significant shrinkage at 12 weeks. Suspend & Gore – It needs to be integrated properly into the tissues. Autologous DermMatrix had significant decrease in cell number as compared to all other (POP) Surgery. PrPc prions are mutated due to infectious agent 10% in literature/monofilament at the bladder neck of female Myoblast taken from muscle biopsy from the patient. Infection 3 (1.98%) Resistant to infection. Man Orbital floor reconstruction permanent elastin. Angiogenesis (CD31) Allografts were freeze dried and irradiated. 152 15 Synthetic sling vs. cadaveric fascia vs. control Cost Growth factors not to be modified by tissue fluids. Vaginal tissue, skin and other sites degradation inhibitor. 34/100,000 Heat exposure. Collagen Mersilene Atrium, 6x 16 cm strips used for sacrocolpopexy (67) Urogen Allografts. Biochemical basis for Pelvic floor support. Donor Screening. Capsule thickness generally measures the severity of the inflammatory response. However, no implant had a significant change over the 12 weeks. Sling materials are included in class II devices and are subject to general controls and market surveillance, patient registries. (1990 amendment) FDA classify all implantable devices into 3 regulatory classes based on the degree of regulation necessary to provide device safety and effectiveness. (1976 amendment) Sling materials are included in class II devices and are subject to general controls and special controls. It requires data from human clinical trials, post-market surveillance, patient registries. FDA Regulation Biomaterial – Any natural or synthetic substance that incorporates or integrates into patients tissues. Biocompatibility – Ability of a material to perform with an appropriate host response in a specific situation.
– It needs to be integrated properly into the tissues
– Generate an appropriate inflammatory response
– Maintain mechanical integrity (hold shape)
Criteria for Ideal Synthetic Sling

1. The material should be chemically inert.
2. Not to be modified by tissue fluids.
3. Not induce inflammatory response or antibodies.
4. Not be carcinogenic.
5. Not induce allergy or hypersensitivity.
6. Be able to resist mechanical stress.
7. Be manufactured in the required shape.
8. Be able to be sterilized.
9. Resistant to infection.
10. Be resistant to adhesions.
11. Have a better in vivo response than autologous tissue.
12. Cost effective

1.
Clinical evidence in use of biological materials for pelvic organ prolapse surgery

Rahmi Onur, MD. Department of Urology, Firat University, Elazig-Turkey.

Mesh use in POP surgery

2010: 300,000 women, underwent POP repair surgeries in US appr. in 100,000 women mesh used for repair

3 out of 4 mesh POP procedures were performed transvaginally

Should we use biological or synthetic materials in pelvic floor?

- Is there enough evidence?
- Evidence based literature data?
- Benefit / complication ratio?
- Which mesh?
 - Biological, synthetic?
 - Absorbable, Nonabsorbable?
 - Composite?

Apical Vault prolapse
Anterior repair
Posterior repair
Combined

Apical prolapse: Abdominal sacrocolpopexy:

- Success ranges between 71-100%
- 74% success rate even after 13 yrs
- 67 women who underwent ASC with cadaveric fascia lata: 92% success (f-u: 6-11 months)
- Laparoscopic Sx has similar success at experienced hands
- Exposure less than 1% with polypropylene, > 3% with polyethylene grafts

RCT: Polypropylene mesh is superior compared with cadaveric fascia lata in sacral colpopexy

Objective cure rates: 91% vs 68%.

Higher success rates with mesh (89%) compared with allograft or xenograft use (61%).

Transvaginal repair of apical and vault prolapse

- Benson et al: 88 women: 30 mo follow-up

Bilateral sacrospinous vault suspension & paravaginal repair
sacrocolpopexy & paravaginal repair

optimal result: 29% 58%
unsatisfactory results: 33% 16%

Transvaginal vs Abdominal repair of apical and vault prolapse

- Lo and Wang: 138 women:
 Maher et al: 95 women

Unilateral sacrospinous vault suspension Abd. sacrocolpopexy

optimal result:
Lo & Wang: 80.3% 94.2%
Maher et al: 91% 94%

Vaginal repair of vault prolapse by mesh

- Posterior intravaginal slingplasty: to reinforce atrophied uterosacral ligaments

<table>
<thead>
<tr>
<th>Author</th>
<th>mesh (type)</th>
<th>material</th>
<th>technique</th>
<th>follow-up</th>
<th>cure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo & Wang, 1998</td>
<td>Polypropylene</td>
<td>Surgical mesh</td>
<td>Posterior</td>
<td>24 months</td>
<td>80.3%</td>
</tr>
<tr>
<td>Maher et al, 2004</td>
<td>Polypropylene</td>
<td>Surgical mesh</td>
<td>Posterior</td>
<td>24 months</td>
<td>94.2%</td>
</tr>
</tbody>
</table>

71- 100% success

Use of mesh in apical prolapse

- Abd Scx with mesh: lower rate of recurrent vault prolapse, reduced rate of residual prolapse and less dyspareunia compared to vaginal sacrospinous colpopexy

- Abd. Scx: Safe and efficacious

- Transvaginal surgery with mesh to correct vaginal apical prolapse is associated with a higher rate of complication

Use of grafts in Anterior compartment

Why grafts are used?

- Limited success with classical anterior repair
- Intrinsic attenuated tissue – or – even no native tissue
- Risk for failure within 4 yrs: 30%
- Risk of reoperation as high as 29%
- Anterior colporrhaphy success: 37-57%

- Graft use allows a broader base of support
- Eliminates the need to be dependent on existing weakened tissue
Anterior repair reinforced by absorbable mesh/graft

<table>
<thead>
<tr>
<th>Author</th>
<th>Mesh type</th>
<th>Follow-up (mo)</th>
<th>Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaikin et al</td>
<td>Cadaveric fascia</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Groutz et al</td>
<td>Cadaveric fascia lata</td>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>Gandhi et al</td>
<td>Cadaveric fascia</td>
<td>13</td>
<td>79</td>
</tr>
<tr>
<td>Chung et al</td>
<td>Cadaveric dermis</td>
<td>24</td>
<td>84</td>
</tr>
<tr>
<td>Salomon et al</td>
<td>Porcine dermis</td>
<td>18</td>
<td>81</td>
</tr>
<tr>
<td>Clemons et al</td>
<td>Alloderm</td>
<td>18</td>
<td>59</td>
</tr>
</tbody>
</table>

Anterior repair reinforced by absorbable mesh/graft

<table>
<thead>
<tr>
<th>Author</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (2001)</td>
<td>anterior repair vs ant. Repair + polyglactin mesh</td>
<td>Higher success than traditional repair</td>
</tr>
<tr>
<td>Meschia (2007)</td>
<td>anterior colp. vs anter. colp. + porcine dermis (Pelvicol)</td>
<td>No difference at 1 year f-u</td>
</tr>
<tr>
<td>Gandhi (2005)</td>
<td>Anterior colporraphy w/o (solvent dehydrated cad. fascia lata)</td>
<td>similar success at 13th mo</td>
</tr>
<tr>
<td>Gomelski</td>
<td>Porcine dermis</td>
<td>91% at 24 mo f-u: cure</td>
</tr>
</tbody>
</table>

Anterior colporraphy +/- absorbable graft

109 patients: appr. 2 years follow-up, POP-Q evaluation of recurrence

- Standard ant. colporraphy: 30% satisfactory outcome
 - ant. colporr. + polyglactin mesh: 42% with
 - ultralateral colporraphy: 46% with
- Addition of mesh: No benefit

186 women: trocar-guided mesh repair vs 182 women underwent colporraphy

At year 1: no prolapse (objective and subjective outcome)

Restoration of anterior vaginal wall to POP-Q stage 0 to 1

52.3% in mesh group vs 47.6% in no-mesh group (p<0.001)

with regard to vaginal bulging

75.4% in mesh group vs 62.1% in no-mesh group (p<0.001)

Anatomic superiority with use of mesh in anterior compartment

<table>
<thead>
<tr>
<th>RCT</th>
<th>Follow-up (years)</th>
<th>Anatomic Cure</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swarup (2008)</td>
<td>90 12</td>
<td>91% AVH 72%</td>
<td>p=0.05</td>
</tr>
<tr>
<td>Nguyen (2004)</td>
<td>75 12</td>
<td>87% AVH 65%</td>
<td>p=0.05</td>
</tr>
<tr>
<td>Carey (2009)</td>
<td>139 12</td>
<td>81% AVH/AvP</td>
<td>p=0.07</td>
</tr>
<tr>
<td>Nusinoff (2010)</td>
<td>232 36</td>
<td>87% AVH 91%</td>
<td>p=0.0001</td>
</tr>
<tr>
<td>Iglesias (2010)</td>
<td>55 9.7</td>
<td>40.6 AVH 29.6</td>
<td>p=0.29</td>
</tr>
<tr>
<td>Witham (2011)</td>
<td>194 12</td>
<td>90.4 AVH 64.8</td>
<td>p=0.001</td>
</tr>
<tr>
<td>Allman (2011)</td>
<td>389 12</td>
<td>82.3 AVH 47.5</td>
<td>p=0.008</td>
</tr>
</tbody>
</table>
Comparative studies: EFFICACY

A trend in the crude objective failure rates with procedures not using mesh/graft having highest failure:
- no mesh > absorbable synthetics > biological > non-absorbable meshes

Use of graft reinforcement in anterior repair

- Mixed evidence
- In primary cystocele: evidence is mixed for repair reinforced with prostheses in anterior repair
- Prosthetic reinforcement in women with recurrent cystocele does appear to improve short-term outcomes
- A role for the use of grafts in anterior vaginal wall prolapse: relatively low rate of complication with acceptable outcomes

Posterior repair with graft reinforcement

- Who should receive?
 - recurrent rectoceles
 - advanced prolapse
 - deficient rectovaginal fascia and weak tissue
 - coexistent risk factors such as obesity, chronic constipation

Standard posterior colporraphy

- Success rate with traditional repair: 76%-96%
- Use of grafts: questionable
- Synthetic graft use: more complications
- Should we use biological-absorbable grafts?

Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review

- 110 studies: 11785 women
- Similar exposure rates with use of biological or synthetic grafts (10.1% vs 10.3%)

4th International Consultation for Incontinence
Committee for Pelvic Organ Prolapse review

- Insufficient data to make any definitive conclusion with regard to the role of biological or synthetic prosthetic materials in primary or recurrent prolapse surgery
- Many of the studies: retrospective case series
- definition of prolapse is different
- no standard procedure used
- lack of consensus on the definition of anatomic cure
- poor usage of validated questionnaires
Posterior repair with graft reinforcement

- Xenograft use in posterior compartment (porcine dermis, porcine SIS)
- A single RCT and 2 comparative cohort studies did not show improved outcomes with biological grafts.

*Modified from Le et al, Curr Opin Obstet Gynecol 2007

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Graft</th>
<th>Mean follow-up (month)</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clow & Floras, 1995 [6]</td>
<td>15</td>
<td>Dermal autograft</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td>Dell & O’Kearney, 2005 [6]</td>
<td>39</td>
<td>Porvocure</td>
<td>12</td>
<td>100%</td>
</tr>
</tbody>
</table>

Median follow-up was 12 mo

Objective failure was compared:

- No mesh: 12.7% failure
- Absorbable graft: 6.6%
- Synthetic mesh: 5.5%

Posterior repair with graft reinforcement

- 9 studies with 417 women: 2 RCT, 2 non-randomised comparative studies, case series, abstract
- 3 studies used absorbable synthetic, 3 used biological graft, 1 used combined, 2 used synthetic meshes
- No RCTs or comparative studies compared different types of meshes
- Median follow-up was 12 mo
- Objective failure was compared:

Posterior repair with graft reinforcement

- Graft augmented posterior repair: 60-100% success rates, but risk of erosion, dyspareunia, difficulty in defecation, etc.
- 1 RCT showed anatomic benefit for posterior repair with mesh, 3 RCT did not show any benefit.
- Transvaginal posterior repair with mesh does not appear to provide any added benefit

The need for graft reinforced repairs of posterior prolapse is less clear than for anterior prolapse and abdominal Scx

There are no comparative studies to guide any recommendation on the use of meshes in posterior repair when compared with native tissue
Combined procedures- cystocele and rectocele repair

- Median operative times for anterior/apical repairs with fixation to the SSL with Prolift and Elevate were shorter than reports of abdominal (221–225 min) and robotic (226–328 min) sacrocolpopexy.
- No rectal injury but 3 (2.4%) bladder injuries with Prolift
- Pelvic hematoma: 4.8%
- Less hospital stay with Elevate (less postoperative pain?)
- Voiding dysfunction requiring catheterization 7.1% with Prolift

Recurrence with Prolift

<table>
<thead>
<tr>
<th>Author</th>
<th>Follow-up</th>
<th>Medicaid</th>
<th>Mean failure of treatment</th>
<th>Core rate</th>
<th>Adverse effects</th>
<th>Median recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin et al., 2009</td>
<td>3/4</td>
<td>141/142</td>
<td>Recurrence 4/1</td>
<td>12</td>
<td>35.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Lomax et al., 2005</td>
<td>15</td>
<td>63</td>
<td>Recurrence 4/1</td>
<td>6</td>
<td>35.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Casey et al., 2006</td>
<td>18</td>
<td>487</td>
<td>Recurrence 4/1</td>
<td>3.6</td>
<td>No.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Owen et al., 2011</td>
<td>11</td>
<td>19</td>
<td>Recurrence 4/1</td>
<td>7</td>
<td>No.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Adhikari et al., 2011</td>
<td>14</td>
<td>52</td>
<td>Recurrence 4/1</td>
<td>27</td>
<td>No.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Bhatia et al., 2012</td>
<td>14</td>
<td>42</td>
<td>Recurrence 4/1</td>
<td>23.9</td>
<td>No.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Caine et al., 2013</td>
<td>14</td>
<td>76</td>
<td>Recurrence 4/1</td>
<td>34.5</td>
<td>No.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The use of graft materials in vaginal pelvic floor surgery

Published literature suggest that mesh use for POP repair
- is effective, restores anatomy
- improve QoL measures
- relatively safe
- serious AEs are low
* Important option for treatment of complicated cases

Mesh related adverse events

- FDA : Manufacturer and User Device Experience (MAUDE) database
 - 2005- 2010: Database was set, 3719 events were reported
 - 2874 (out of 3719) events within last 3 years.
 - 1503 events out of 2874 cases were related to POP repairs
 - 2007-2010: reported events were 5 times more than the events reported between 2005-2007.

Several safety concerns & conclusions

1- Patients who undergo POP repair with mesh are subject to mesh-related complications
2- Mesh-associated complications are not rare (110 studies: 11,785 women, 10 % of women experienced mesh erosion within 12 months of surgery).
3- Mesh contraction may cause vaginal shortening, tightening, and/or pain
Several safety concerns & conclusions

4- New onset SUI has been reported to occur more frequently following mesh augmentation in anterior repair than traditional repair without mesh

5- Transvaginal apical or posterior repair with mesh does not provide additional benefit in treatment

6- An anatomic benefit of anterior repair + mesh. However, improvement in QoL did not differ significantly when compared to traditional repair

Limitations of existing literature

- Majority of studies focus on ideal pelvic support for effectiveness measure which is not necessary for most women to achieve symptomatic relief
- Results are mixed: both primary and repeat procedures
- Multiple compartment repairs simultaneously
- Adverse events are not reported in standardized method
- Poorly designed, underpowered, incomplete evaluation, documentation (few RCT, validated instruments, surgical technique, etc.)
- Very few studies extend past 2 years.

Biomaterial use in POP surgery

- Is effective, restores anatomy
- Improves QoL measures
- Relatively safe
- Serious AEs are low
- Important option for treatment of complicated cases

 Patients who undergo POP repair with mesh are subject to mesh-related complications
- Mesh exposure, erosion or mesh contraction may cause vaginal shortening, tightening, and/or pain
- No QoL difference
- No conclusive evidence to use mesh
Complications of biological Implants

Paulo Palma, M.D., Ph.D.
Professor of Urology
University of Campinas,
São Paulo, Brazil

ICS 2013 Barcelona

Childbirth & Prolapses

Anatomical basis

Level I Defect

Anterior Defects
Anterior Defects

- Lateral defect
- Pubourethral ligament
- Uterosacrum ligament
- Urethrovaginal fascia

Lateral site specific correction

Central defect

Central site specific correction

Transverse apical defect

Site specific apical transverse correction
Transverse Anterior Defect

Mesh for POP repair
- High failure rates after conventional techniques
- Reinforce the native tissues (“neoligaments”)
- Achieve improved functional and anatomical outcomes
- Anterior vaginal mesh: reduces the prolapse recurrence
- Posterior and apical vaginal mesh: no level I evidence to support the use

Complications (2008-2011)
- Erosion
- Infection
- Pain
- Urinary problems
- Recurrence of prolapse and/or incontinence
- Shrinkage of polypropylene meshes1,2

2. Gauruder-Burmester A et al. Int Urogynecol J Pelvic Floor Dysfunct 2007

SIS: abscess

SIS: Asseptic abscess
Urethrovaginal fistula

Partial removal of mesh

Posterior Gynemesh exposure

Posterior Gynemesh exposure

Posterior Gynemesh exposure

Posterior Gynemesh exposure
Mesh contraction

What are the clinical concerns?

Major Symptoms
- Severe vaginal pain (worsened by movements)
- Dyspareunia

Minor Symptoms
- Vaginal discharge/spotting
- Awareness of prolapse
- Male partner discomfort

Vaginal examination
- Prominent tense focal areas of mesh
 - arm / body
- Painfull prominent mesh areas
- Prominent tender band
- Vaginal tightness
- Foreshortened vagina
- Mesh erosion

Palpation of each side and arms of the mesh

- Ask if she experienced pain like during sexual intercourse or movements
- Localize trigger points

Obstruction (BOO)

- BOO under diagnosed
- Incidence 2.7 – 23%
- Anatomical or functional
- Detrusor overactivity

Perfurations

- 3.5%
Etiology

- Anti-incontinence procedures 20%
- Genital prolapses 16%
- Primary obstruction of the bladder neck 6%

Diagnosis

- Residuals
- Urodynamics + VUCG
- Videourodynamics

Nomograma

BOO

1. Functional
2. Anatomic

Obstruction

Tape incision
Partial removal

Urethropelvic ligament

Vaginal wall arcus tendineus

Endopelvic fascia

Urethra

Pubourethral ligament

Urethrolisys

Urethrolisys:

Results

Autologous: 18 / 210 (8.5%)

Synthetic: 2 / 226 (0.6%)

Diagnosis: from 3 m to 8 yrs. (mean: 9 m)

Q_{max}: 9.9 ml/s \ P_{detQmax}: 48 \text{ cmH}_2\text{O (mean)}

Palma et al; Eur. Urol, 2004

TUIBN

Healing abnormalities

• Geralmente exposições sem granulação
• Ocorre em 6-14% casos
• Maioria assimptomática
• Tratada conservadoramente consultório ou CC
• Influencia resultado?

Classification of healing abnormalities

<table>
<thead>
<tr>
<th></th>
<th>Simple</th>
<th>Comple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo pós-op</td>
<td>< 12 weeks</td>
<td>> 12 weeks</td>
</tr>
<tr>
<td>Granulatio inflammation</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Localization</td>
<td>incision</td>
<td>Other</td>
</tr>
<tr>
<td>organ</td>
<td>Vagina</td>
<td>viscus</td>
</tr>
</tbody>
</table>

IUGA grafts symposium, 2005
Sling: healing abnormalities

Partial removal

Inside- out?

Complications - TOT

<table>
<thead>
<tr>
<th>Complication</th>
<th>Ob Tape</th>
<th>Monarc</th>
<th>TVT-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosão</td>
<td>99</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Infecção</td>
<td>22</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Neuropatia</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dor</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Sangramento</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>L. Bexiga</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L. Uretra</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Leg pain

• 40% TVT-O

2008 neurourology and urodymanics 27:572-3

Persistent pain
Conclusions

• Mesh exposure 6-14% (experience)
• Conservative management first
• Partial removal
• Impact on the outcome?
• Severe complications -
 • New techniques & better meshes
Addressing Concerns over MESH used for repair of Pelvic Organ Prolapse

Amit Chakrabarty, MD, FRCS.
Urologic Clinics of North Alabama
www.ucna.com

Complications of the Prolapse Mesh
- Failure of the Procedure
- Pain (Vagina, leg, pelvic, abdominal)
- Infection or rejection of the graft material
- Reurrent urinary tract infection
- Extrusion of the mesh into the vagina causing pain, discharge, bleeding
- Erosion of the mesh into bowel, bladder, urethra, or rectum

FDA & Center for Diseases and Radiologic Health
Urogynecologic Surgical Mesh:
Update on the Safety and Effectiveness of Transvaginal Placement for Pelvic Organ Prolapse

- In October 2008 the FDA released a Public Health Notification
 - to inform clinicians and patients of the adverse events related to the urogynecological use of surgical mesh
 - and advise how to mitigate these risks and counsel patients
- FDA continued to monitor the outcomes of such mesh repairs
- MAUDE reports for 3 years (Jan 1, 2008 to Dec 31, 2010)
 - 2874 MDRs (including reports of injury, death and malfunction)
 - 1503 POP repairs
 - 1371 SUI repairs

- The FDA also conducted a systematic review of the scientific literature to learn more about the safety and effectiveness of POP and SUI using surgical mesh.
- July 13, 2011, FDA released an update on safety and effectiveness of transvaginal placement of surgical mesh for pelvic organ prolapse (POP) on their website as a Public Health Notification
 - http://www.fda.gov/MedicalDevices/safety/AlertsandNotices/ucm262435.htm
- Did not include mesh used in treatment of Stress urinary incontinence or that used for abdominal or laparoscopic repair of pelvic organ prolapse

TOTAL PROLIFT MESH KIT REMOVAL
The FDA determined that:
- Serious adverse events are NOT rare, contrary to what was stated in the 2008 PHN, and
- Transvaginally placed mesh in POP repair does NOT conclusively improve clinical outcomes over traditional non-mesh repair.
- The FDA convened an advisory panel meeting of outside experts in September 2011 to discuss these findings and the types of clinical studies necessary to better assess the risks and benefits of using mesh to treat POP and SUI.
- Advised on post marketing studies (522) on single incision mesh and slings.

2011 additional FDA Recommendations

In addition, the FDA also recommended that health care providers:
- Recognize that in most cases, POP can be treated successfully without mesh thus avoiding the risk of mesh-related complications.
- Choose mesh surgery only after weighing the risks and benefits of surgery with mesh versus all surgical and non-surgical alternatives.
- Consider these factors before placing surgical mesh:
 - Surgical mesh is permanent implant that may make future surgical repair more challenging.
 - A mesh procedure may put the patient at risk for requiring additional surgery or for the development of new complications.
 - Removal of mesh due to mesh complications may involve multiple surgeries and significantly impair the patient's quality of life. Complete removal of mesh may not be possible and may not result in complete resolution of complications, including pain.
 - Mesh placed abdominally for POP repair may result in lower rates of mesh complications compared to transvaginal POP surgery with mesh.
- Inform the patient about the benefits and risks of non-surgical options, non-mesh surgery, surgical mesh placed abdominally, and the likely success of these alternatives compared to transvaginal surgery with mesh.
- Inform the patient about the benefits and risks of non-surgical options, non-mesh surgery, surgical mesh placed abdominally, and the likely success of these alternatives compared to transvaginal surgery with mesh.
- Inform the patient about the benefits and risks of non-surgical options, non-mesh surgery, surgical mesh placed abdominally, and the likely success of these alternatives compared to transvaginal surgery with mesh.
- Inform the patient about the benefits and risks of non-surgical options, non-mesh surgery, surgical mesh placed abdominally, and the likely success of these alternatives compared to transvaginal surgery with mesh.
- Obtain specialized training for each mesh placement technique, and be aware of the risks of surgical mesh.
- Be vigilant for potential adverse events from the mesh, especially erosion and infection.
- Watch for complications associated with the tools used in transvaginal placement, especially bowel, bladder and blood vessel perforations.
- Inform patients that implantation of surgical mesh is permanent, and that some complications associated with the implanted mesh may require additional surgery that may or may not correct the complication.
- Inform patients about the potential for serious complications and their effect on quality of life, including pain during sexual intercourse, scarring, and narrowing of the vaginal wall in POP repair using surgical mesh.
- Provide patients with a copy of the patient labeling from the surgical mesh manufacturer if available.

FDA UPDATE 01/04/2012

- The FDA continues to assess the safety and effectiveness of urogynecologic surgical mesh devices, through:
 - Review and analysis of published literature, Medical Device Reports (adverse event reporting) submitted to the agency, and post-approval study reports.
 - Epidemiological research on safety and effectiveness of surgical mesh, as a part of our effort to better understand possible adverse events associated with surgical mesh for SUI and POP.
 - Collaborations with professional societies and other stakeholders to fully understand the postmarket performance of urogynecologic surgical mesh devices, as well as the occurrence of and symptoms associated with potential adverse events.
 - Collecting and reviewing all available information about currently marketed urogynecologic surgical mesh devices.
 - Mandating postmarket surveillance studies ("522 studies") by manufacturers of urogynecologic surgical mesh devices.

On January 03, 2012, the FDA issued

- 88 postmarket study orders to 33 manufacturers of urogynecologic surgical mesh for POP, and
- 11 postmarket study orders to seven manufacturers of single-incision mini-slings for SUI.

The manufacturers will be required to submit study plans to the FDA that address specific safety and effectiveness concerns related to surgical mesh devices for POP and single-incision mini-sling devices for SUI. Data from the studies will enable the agency to better understand the safety and effectiveness profiles of these devices.

Why mesh?

- **PROS:** Improves anatomical results from surgery
- **CONS:** Associated with risks like erosion, sexual dysfunction, urinary tract injury, pain etc
- All except erosion are not unique to mesh surgeries
- Certain meshes used in the past and possibly responsible for several of the complications included in the FDA warning have been removed from the US marketplace.
Rates of reoperation for failure of primary repair have been reported to be as high as 29%.

The contributions to risk of reoperation are multifactorial.

However, recent studies recognize the contribution of genetic and hereditary factors to the risk of reoperation.

Partially contributing to the high recurrence rate is the use of native tissue in primary repair. This has led to an increase in the use of biomaterials.

Nieminen et al. 1

Studies

Lukban et al, March 2012
Elevate anterior and apical
1 year prospective outcomes
92.5 and 89.2 % posterior wall and apical cure rates
Extrusion rate of 6.5%

Society of Urodynamics and Female Urology (SUFU) stand on the FDA recommendations

FDA recommendations that SUFU strongly agrees

Surgeons require rigorous training in pelvic floor anatomy and pelvic floor surgery as well as proper patient selection for pelvic floor prolapse reconstructive procedures
Prior to utilization of mesh in pelvic floor repair, surgeons should be properly trained in specific mesh implantation techniques
Prior to utilization of mesh the surgeon should be competent in recognizing intraoperative and post operative complications as well as comfortably and competently managing these adverse events eg those involving urinary and gastrointestinal tracts
Prior to implantation of surgical mesh for the treatment of pelvic organ prolapse, the surgeon and patient MUST have a proper informed consent discussion regarding the risks, benefits, alternatives and indications for the use of mesh

FDA recommendations that SUFU acknowledges

Recognize that many cases of POP can be treated successfully without mesh
Choose mesh surgery only after weighing the risks and benefits of surgery with mesh vs all other alternatives
Consider that surgical mesh is a permanent implant which can make future POP repairs more challenging, can cause bothersome complications which require additional surgery and can be difficult or impossible to remove
Inform patients about treatment alternatives that do not require mesh placement
Notify patients when mesh will be used and provide patients with information about mesh
Ensure that the patient understands about the risks of mesh surgery and the limited long-term outcomes data
The American College of Obstetricians and Gynecologists (ACOG) & the American Urogynecologic Society (AUGS) stand on the FDA recommendations.

Time to Rethink:
An Evidence-Based Response from Pelvic Surgeons to the “FDA Safety Communication: UPDATE on Serious Complications Associated with Transvaginal Placement of Surgical Mesh for Pelvic Organ Prolapse”

1. The FDA should more accurately reflect the reality that in the surgical management of advanced prolapse, all treatment options involve risks. The UPDATE portrays transvaginal mesh repairs as uniquely hazardous, providing no broader context regarding the significant risks and/or higher recurrence rates associated with its alternatives.

There is ample published evidence (arguably more robust for TVM than its alternatives) upon which physicians and patients can have a detailed informed consent process leading to an individualized decision.

2. Training guidelines and credentialing criteria lie at the core of these reported complications and need to be better defined as a collaborative effort between societies, hospital systems, and the medical device industry.

3. Transvaginal mesh, when used judiciously in experienced hands, is an essential tool for a large number of expert, high-volume surgeons, only a fraction of which have co-signed this document. All of the co-signed surgeons are committed, above all else, to advancing the safest and most effective surgical procedures.

We are deeply concerned that the current process could, as an unintended consequence result in a major setback to those core goals for many providers successfully utilizing mesh and observing high rates of satisfaction and superior outcomes. This large segment of highly dedicated surgeons, using mesh in a thoughtful and selective manner in properly counseled patients, could suffer unjustified and arbitrary medical-legal exposure if the current process fails to incorporate a full and accurate perspective on these complex issues and challenging surgical conditions that we treat on a daily basis.
American Urological Society (AUA) stand on the FDA recommendations

- AUA strongly agrees with the FDA that a thorough informed consent should be conducted prior to the use of mesh products for pelvic organ prolapse. The AUA agrees with the FDA statement that surgeons who wish to utilize mesh techniques for pelvic organ prolapse should:
 - undergo rigorous training in the principles of pelvic anatomy and pelvic surgery
 - be properly trained in specific mesh implantation techniques
 - be able to recognize and manage complications associated with vaginal mesh

MRG Study December 2011

- 181 respondents, of which 130 were current users of synthetic surgical mesh in urogynecologic treatments and 51 were synthetic surgical mesh non-users
- Users: 72 Gynecologists, 40 Urologists, 18 Urogynecologists
- Non Users: 44 Gynecologists, 7 Urologists
- Survey results:
 - procedure volumes remained flat in 2011, due in large part to shaken confidence and increased patient concern.
 - 2012, the number of transvaginal pelvic floor repair (PFR) procedures and sacral colpopexy/hysteropexy procedures using either a synthetic mesh or a biologic graft will increase by 2 percent.
 - Some companies and mesh brands have been substantially more successful than others at building physician loyalty despite the recent adverse events and proposed regulatory changes.
 - While little differentiation seems to exist between brands of biologic meshes, physicians do demonstrate strong brand preferences among synthetic meshes,
 - Base their choice on specific factors that include mesh material or weight, patient profiles and training programs offered by synthetic mesh providers.

AUGS voices opposition to restrictions on mesh

- AUGS President Anthony G. Visco, MD
 - The American Urogynecologic Society strongly opposes any restrictions by state or local medical organizations, healthcare systems, or insurance companies which ban currently available surgical options performed by qualified and credentialed surgeons on appropriately informed patients with pelvic floor disorders,
 - A ban on mesh would have a chilling effect on research in this area and would severely limit the advancement of science and future innovations that could significantly help women. We recommend preserving all surgical options, including transvaginal mesh for pelvic organ prolapse, adopting recently published credentialing guidelines, standardizing the informed consent process, and establishing a robust mechanism to track both surgeons and products being implanted to fully assess safety and efficacy,

AUGS latest recommendations

- A complete restriction on the use of surgical mesh was not the stated intent of the January 2011 FDA safety communication regarding mesh.
- The decision on surgical alternatives should be made by the patient and her surgeon.
- A ban on surgical mesh would prohibit the surgical studies mandated by the FDA and recommended by the National Institutes of Health, American College of Obstetricians and Gynecologists, and AUGS.
- In some circumstances, transvaginal mesh for pelvic organ prolapse may be the most appropriate surgical option.
- Any restriction of mesh slings for the treatment of stress urinary incontinence is clearly not supported by any professional organization or the FDA.
- Any restriction of mesh placed abdominally for the treatment of prolapse is clearly not supported by any professional organization or the FDA.
- Instead of a ban on mesh, AUGS recommends the implementation of credentialing guidelines so that mesh procedures are performed by qualified surgeons.

Abstract at International Continence Society (ICS) Glasgow, UK, 2011

CAN CARDIAC STENT & INTRAOCULAR LENS TECHNOLOGY BE APPLIED TO PELVIC FLOOR REPAIR WITH MESH?

AUTHOR LIST: Amit Chakrabarty, MD (Urologic Clinics of North Alabama, Huntsville, AL); Kumaresan Ganabathi, MD (Clarion Health Complex, Clarion, PA); J. Steven Alexander, MD (Gynecology Center, Fort Wayne, IN); Philip Hockstra, MD (MMPC, Grand Rapids, MI)
CONCLUSIONS

This is the first multi-institutional study looking at the efficacy and safety of surgical mesh treated with PC that was used to repair pelvic prolapse. Our data suggests that this device is a safe and effective treatment for anterior prolapse. Though no statistical inferences can be made with such limited numbers in the study group, short term data suggests that PC treated mesh use in repair of anterior prolapse is very effective and demonstrates a marked reduction in adverse events, particularly dyspareunia and mesh exposure. This is in line with similar successes of other PC coated medical devices implanted in the body. Longer term studies with more subjects are needed to prove the improved performance of the Perigee PC system.

DOES PELVIC MESH TREATED WITH PHOSPHORYLCHOLINE IMPROVE OUTCOMES? AN EARLY EXPERIENCE?

Amit Chakrabarty MD et al,
European Journal of Obstetrics and Gynecology,
December 2012

OBJECTIVES: Implantable devices treated with Phosphorylcholine (PC) have been successfully used in cardiac, ophthalmic, and other applications. This surface modification has resulted in a reduction in the host inflammatory responses. This pilot study tested the safety and efficacy of PC treated polypropylene mesh grafts implanted for anterior pelvic organ prolapse.

STUDY DESIGN: Subjects from 5 U.S. sites collected data on subjects implanted with Perigee and PC - PC. Pre-procedure data collected included demographics and prolapse severity. At follow-up, subjects were assessed for anatomical outcomes (success: Stage I POPQ or Baden Walker), symptomatic improvement, and complications, particularly mesh exposure.

RESULTS: A total of 40 subjects were enrolled with 80% (32/40) of them completing at least 5-7 months of follow-up. Mean patient age was 60 years (range 36-74 years) and the mean BMI was 28 (range 20 to 40). There were no cases of mesh exposure/extrusion or granuloma formation. The anatomical success rate was 100% at 5-7 months (32/32).

CONCLUSIONS: This is the first publication on pelvic mesh treated with PC. There were no adverse events attributed to this surface modification. However, as the numbers are small, the results are not statistically significant. PC surface modification of pelvic mesh shows promise in its application for the reduction of mesh-related complications.

INFORMED CONSENT

UROLOGIC CLINICS OF NORTH ALABAMA

AMIT CHAKRABARTY MD, MS, FRCS

A Practice of Adult and Pediatric Urology

Main Office: 185 Whitesport Drive, Suite 6 Huntsville, Al 35801

DOES PELVIC MESH TREATED WITH PHOSPHORYLCHOLINE IMPROVE OUTCOMES? AN EARLY EXPERIENCE?

Amit Chakrabarty MD et al,
European Journal of Obstetrics and Gynecology,
December 2012

OBJECTIVES: Implantable devices treated with Phosphorylcholine (PC) have been successfully used in cardiac, ophthalmic, and other applications. This surface modification has resulted in a reduction in the host inflammatory responses. This pilot study tested the safety and efficacy of PC treated polypropylene mesh grafts implanted for anterior pelvic organ prolapse.

STUDY DESIGN: Subjects from 5 U.S. sites collected data on subjects implanted with Perigee and PC - PC. Pre-procedure data collected included demographics and prolapse severity. At follow-up, subjects were assessed for anatomical outcomes (success: Stage I POPQ or Baden Walker), symptomatic improvement, and complications, particularly mesh exposure.

RESULTS: A total of 40 subjects were enrolled with 80% (32/40) of them completing at least 5-7 months of follow-up. Mean patient age was 60 years (range 36-74 years) and the mean BMI was 28 (range 20 to 40). There were no cases of mesh exposure/extrusion or granuloma formation. The anatomical success rate was 100% at 5-7 months (32/32).

CONCLUSIONS: This is the first publication on pelvic mesh treated with PC. There were no adverse events attributed to this surface modification. However, as the numbers are small, the results are not statistically significant. PC surface modification of pelvic mesh shows promise in its application for the reduction of mesh-related complications.