Aims of course/workshop

Bladder outlet obstruction in women and abnormal detrusor function are a cause for LUTS and can result in voiding dysfunction. This is particularly true when facing surgical correction of urinary incontinence. Yet, both are difficult to define and even more difficult to measure. No clinical syndromes are clearly related but the long term consequences may be important resulting in high residual volumes, infection and voiding difficulties.

It is urgent to have tools that can assess urethral resistance and detrusor function in women. The methodology used in males is not suitable to the female lower urinary tract. We depict the main urodynamic and clinical differences and propose adjustments to be used in clinical practice.
FEMALE BLADDER OUTLET OBSTRUCTION
THE GROWING PROBLEM

LUIZ ABRANCHES MONTERO
RIO 2014

PROBLEM

• MALE BLADDER OUTLET OBSTRUCTION (BBO) IS FAR BETTER DOCUMENTED AND STUDIED NOT ONLY BECAUSE OF ITS FREQUENCY BUT ALSO BECAUSE MORE OBVIOUS CLINICAL CORRELATIONS

• BECAUSE THEY LACK A PROSTATE, WOMEN (AND WOMEN DOCTORS) TEND TO FORGET THE VOIDING PHASE OF MICTURITION AND EXPLAIN SYMPTOMS BY STORAGE, INFLAMMATORY, INFECTIOUS OR PSYCHIC MECHANISMS

NEW FACTS

• INCONTINENCE HAS BEEN OBJECTIVELY STUDIED IN THESE LAST DECADES AND SOME MANOMETRIC PROBLEMS WERE IDENTIFIED

• THE OCCURRENCE OF IMPAIRED CONTRACTILITY ALONG WITH INCREASED RESISTANCE HAD BEEN RECOGNIZED – THE UNDERACTIVE BLADDER

NEW FACTS

• PURE OBSTRUCTION IS RARE IN WOMEN

• THE FLUID DYNAMICS OF FEMALE VOIDING IS MORE DIVERSE AND WIDESPREAD THAN IN MEN

• THE BOUNDARIES OF “NORMALITY” LESS DEFINED

• THE NEED FOR A STANDARD OF MEASUREMENT IS URGENT

NEW FACTS

• WOMEN FAIL TO DESCRIBE THEIR STREAM AND COMPARE IT WITH THE PAST.

• THEY ARE MOST CONCERNED WITH LEAKAGE THAN WITH RETENTION

• URINARY INFECTION IS TO BLAME FOR ALL SYMPTOMS (AND IT MAY BE ALSO PRESENT)

NEW FACTS

• THE NEW ANTI-INCONTINENCE SURGERIES CAN BE OF MECHANICAL INFLUENCE TO THE OUTLET

• UNSUCCESSFUL SURGICAL OUTCOMES HAVE TO BE THOROUGHLY EXPLAINED (GIVEN THE OVERALL ACHIEVEMENT OF SURGERIES)

• DETRUSOR FUNCTION AND URETHRAL RESISTANCE BECAME WORTH TO MEASURE OBJECTIVELY

NEW FACTS

• THE FLUID DYNAMICS OF FEMALE VOIDING IS MORE DIVERSE AND WIDESPREAD THAN IN MEN

• THE BOUNDARIES OF “NORMALITY” LESS DEFINED

• THE NEED FOR A STANDARD OF MEASUREMENT IS URGENT
TOPICS

• WE WILL TRY TO:
 - DEPICT THE CAUSES
 - EXPLORE THE CLINICAL FEATURES
 - MAKE AN HISTORICAL SURVEY OF DIAGNOSTIC APPROACHES TO OBSTRUCTION
 - PRESENT SOME DATA AVAILABLE
 - WALK AROUND THE PHYSICS OF PHENOMENA IN ORDER TO
 - REALIZE THE DIFFICULTIES OF MEASUREMENTS IN WOMEN
 - UNDERSTAND ITS LIMITATIONS
 - SUGGEST FURTHER DEVELOPMENTS

NEW AND OLD CAUSES

NEW CAUSES

- **ANATOMICAL**
 - EXTRAURETHRAL
 - GYNECOLOGIC MASSES
 - INCONTINENCE SURGERIES
 - URETHRAL
 - STENOSIS
 - NEPHTALY
 - INFECTION
 - DIVERTICULA
 - CERVICAL OBSTRUCTION

- **FUNCTIONAL**
 - DISSYNERGIAS (NEUROGENIC)
 - ACTIVE CONTRACTION DURING VOIDING
 - INFRAPONTICAL, SUPRASACRAL LESIONS
 - DYSFUNCTIONAL VOIDING (NON NEUROGENIC)
 - SPHINCTERIC SPASMS
 - PSEUDODYSSINERGIA
 - NEUROGENIC/NON-NEUROGENIC
 - FOWLER’S SYNDROME
 - PELVIC SPASTICITY (VESICO-PELVIC DYSSINERGIA)
 - HINMAN SYNDROME
 - LEARNED VOIDING DYSFUNCTION
 - ACQUIRED VOIDING DYSFUNCTION

OLD CAUSES

- **ANATOMICAL**
 - EXTRAVAGINAL MASSES
 - TURNOVER DISEASES
 - OBSTRUCTIVE URETHRAL LESIONS

- **FUNCTIONAL**
 - NEUROGENIC FACTORS
 - MOVEMENT DYSFUNCTION
 - LEARNED DYSFUNCTION
 - ACQUIRED DYSFUNCTION

VOIDING DYSFUNCTION - CAUSES

- **UNLIKE MEN IN WHOM OBSTRUCTION HAS A CERVICO-PROSTATIC OR URETHRAL ORIGIN, FEMALE DIAGNOSTIC ALGORITHMS ARE MORE COMPLEX.**
 - THE LACK OF OBVIOUS ANATOMICAL CAUSE OF OBSTRUCTION LEAD SOME TO STUDY ITS PSYCHOGENIC GROUND (WINER AND PATTERSON, 1996; SASAMARU ET AL., 2007)
 - ITS RELATION TO VAGINAL PROLAPSES IS UNQUESTIONABLE (GEORGE ET AL., 2010; BOW ET AL., 2011) BUT THEIR INTERDEPENDENCE ON CONTRACTILITY AND POSTURAL VARIABILITY HAMPERS A CLEAR UNDERSTANDING OF ITS MICTURITION CONSEQUENCES

- ** THE CASE OF YOUNG WOMEN UNABLE TO RELAX URETHRA DURING VOIDING ATTEMPTS – ASSOCIATION TO OVARIAN CYSTIC DISEASE – FOWLER’S SYNDROME (FOWLER ET AL., 1988)**
- **PSEUDODYSSINERGIA**
- **POST-ANAESTHETIC URINARY RETENTION** (WOHLRAB ET AL., 2009)
- **UNCLEAR AND OF DETRUSOR OR URETHRAL ORIGIN**
- **SLING SURGERY RELATED – THE NEWEST CAUSE?**
 - RARE ACUTE URINARY RETENTION
 - BUT...
 - **FREQUENT CHRONIC VOIDING DYSFUNCTION**
- **MULTIFACTORIAL BUT DIRECT OBSTRUCTIVE EFFECT OF TAPE LIKELY** (SHAHANDAN ET AL., 2008; BANERJEE ET AL., 2008; SHAH AND CHAN, 2011)**
CONCEPTS

• MANOMETRIC CONCEPT OF A RESERVOIR: PRESSURE AND FLOW GENERATED THROUGH ITS OUTLET

• IMAGING CONCEPT OF FUNCTIONAL ANATOMY OF THE OUTLET
 - INTERPRETATION OF IMAGES REQUIRES THE PRESENCE OF A DOCUMENTED CONTRACTION

• USING VIDEO-URODYNAMICS, KUO FOUND 9.6% OF URETHRAL OBSTRUCTION IN WOMEN (KUO, H.; 2000)

• VIDEO SEEMS TO BE VALUABLE IN LOCALIZING OBSTRUCTION, MORE THAN DIAGNOSING IT (KUO, H.; 2005)

OBSTRUCTION AND UNDERACTIVITY

• BOTH COEXIST AS A BROADER CONCEPT OF VOIDING DYSFUNCTION

 2002 ICS DEFINITION: "CONTRACTION OF REDUCED STRENGTH AND/OR DURATION, RESULTING IN PROLONGED BLADDER EMPTYING AND/OR FAILURE TO ACHIEVE COMPLETE BLADDER EMPTYING WITHIN A USUAL TIME SPAN"

• TWO NOTIONS:
 - HIPOCONTRACTILITY
 - SHORTNESS OF CONTRACTION

VOIDING DYSFUNCTION

Obstruction and detrusor failure are often both involved in Voiding Dysfunction and their relative contribution must be assessed

• UNDERACTIVITY INTERACTS WITH OBSTRUCTION IN SUCH A WAY THAT THEY SHOULD NOT BE CONSIDERED INDEPENDENTLY

SUMMARY

• FEMALE CLINICAL AND DYNAMIC DIVERSITY

• GROWING IATROGENIC CAUSES

• BROAD CONCEPT OF VOIDING DYSFUNCTION

• LACK OF DIAGNOSTIC CONSENSUS
Voiding dysfunction

- Definition:
 “abnormally slow and/or incomplete micturition based on symptoms and urodynamic investigations”

Haylen BT et al, 2010 (ICS/REGA joint report)

- Possible causes:
 - Detrusor underactivity or acontractility
 - Bladder outflow obstruction

EPIC study symptom distribution

OAB and Bladder outlet obstruction

- Patients with de novo urgency after anti-incontinence surgery have mid-urethral kinking and proximal urethral dilatation

Murray et al, 2011

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>BOO</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detrusor overactivity</td>
<td>58 (39.2%)</td>
<td>58 (55.1%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Female with BOO according to Blaivas-Groutz

- 32% Voiding
- 58% Storage
- 10% Detrusor overactivity

Blaivas G et al, 2000
OAB and Bladder outlet obstruction

<table>
<thead>
<tr>
<th></th>
<th>Age mean</th>
<th>Qmax(ml/s) mean</th>
<th>Pdet@Qmax (cmH2O) mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic detrusor overactivity (25)</td>
<td>47,2±15</td>
<td>14,47±10,22</td>
<td>58,97±35,13</td>
</tr>
<tr>
<td>Controls (40)</td>
<td>47,67±8</td>
<td>23,24±12,43</td>
<td>25,66±17</td>
</tr>
</tbody>
</table>

Kaygil O et al, 2007

- Repair of genital prolapse, may provide relief of OAB symptoms in 49 to 82% of patients

 Fletcher SG et al, 2010
 Foster RT et al, 2007

- Urethralysis can also relief OAB symptoms in about 50% of patients

 Starkman JS et al, 2008

Voiding dysfunction

Voiding symptoms are more specific of obstruction

- Straining, poor stream, hesitancy

- Incomplete emptying sensation, double voiding

But still low (specificity):

Jeffery S et al, 2008;
Dietz HP et al 2005

> 50% of women with voiding symptoms are not obstructed

Lemack GE, 1999

Voiding dysfunction

- There were no associations between "Urethral resistance" (Schafer grades) and the following clinical variables:

 - "urge incontinence" (p=0,892)
 - " incomplete emptying sensation" (p=0,745)
 - "terminal dribbling" (p=0,834)
 - "Pain" (p=0,975)
 - "Frequency" (p=0,444)
 - "Nocturia" (p=0,082)
 - "Stream strength" (p=0,824)
 - "Strain to void" (p=0,841) or
 - "Hesitancy" (p=0,987)

Monteiro L, unpublished

Female voiding dysfunction

Diagnostic evaluation

History

- High index of suspicion
- Other symptoms associated with voiding dysfunction

 - Feeling a bulge in the vagina
 - Pelvic pressure
 - Spraying
 - Need to immediately re-void
 - Post-micturition leakage
 - Position-dependent micturition
 - Dysuria
- History of UIs
- Neurologic history and co-morbidities
- Record information related with the probable causes of voiding dysfunction
Causes of Female voiding dysfunction

<table>
<thead>
<tr>
<th>Causes</th>
<th>Bladder outflow obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detrusor underactivity/Acontractile detrusor</td>
<td>Pharmacological</td>
</tr>
<tr>
<td></td>
<td>Urogenital prolapse</td>
</tr>
<tr>
<td></td>
<td>Ageing</td>
</tr>
<tr>
<td></td>
<td>Continence surgery</td>
</tr>
<tr>
<td></td>
<td>Overdistension injury</td>
</tr>
<tr>
<td></td>
<td>Urethral stricture, caruncle, diverticulum</td>
</tr>
<tr>
<td>Chronic urinary retention</td>
<td>Pelvic mass</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>Dysfunctional voiding</td>
</tr>
<tr>
<td></td>
<td>Primary bladder neck obstruction</td>
</tr>
<tr>
<td></td>
<td>Detrusor sphincter dyssynergia</td>
</tr>
</tbody>
</table>

History

Physical examination

Abdominal exam, pelvic exam and a neurological exam

Post-void residual volume

- Key test for the evaluation of the emptying phase
- Issue of variability

Post-void residual volume

• 19% of women with LUTS have high PVR
 - Positively related to
 - Age
 - Prior incontinence surgery
 - AIASS
 - Vaginal parity
 - Prolapse

Post-void residual volume

In patients with UIH:
POP > Stage II
Voiding symptoms
Absence of stress incontinence

Predict 82% patients with PVR > 100cc

Lukacs ES et al, 2007

Sadby ML et al, 2012

Milleman et al, 2004

Fitzgerald MP et al, 2001
Post-void residual volume

4th ICI recommended the measurement of PVR in the initial assessment of women with suspected voiding dysfunction

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>GCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-voiding residual should be measured by ultrasound.</td>
<td>A</td>
</tr>
<tr>
<td>Measure post-voiding residual in patients with urinary incontinence who have voiding dysfunction.</td>
<td>B</td>
</tr>
<tr>
<td>Measure post-voiding residual when assessing patients with complications of urinary incontinence.</td>
<td>C</td>
</tr>
<tr>
<td>Post-voiding residual should be monitored in patients receiving treatments that may cause or worsen voiding dysfunction.</td>
<td>D</td>
</tr>
</tbody>
</table>

Thuroff JW et al, 2011

Uroflowmetry

- Qmax < 12ml/s or 15 ml/s
- < 10th centile in Liverpool nomogram

Ultrasound

- Upper urinary tract evaluation
- Bladder stones, diverticulae
- Urethral kinking
- Detrusor wall thickness (although related to DO is not related with VD)

Lekkaluchai O et al, 2009

Cystoscopy

- Determine the site of obstruction
- LUTS with pain
- After incontinence or POP procedures

Gravina GI et al, 2007
Cystoscopy

- Are associated with detrusor overactivity and stage IV cystocele.
- No clear association with obstruction

Gowda M et al, 2012

conclusions

- Women with impaired emptying present with wide array of LUTS
- PVR measurement is the mainstay of evaluation
- Free uroflowmetry enhances PVR accuracy
- When LUTS coexists with high PVR, pressure-flow studies are needed to identify BOO
Most nomograms of female obstruction do not consider detrusor function, showing only one face of the problem. Detrusor pressure is more difficult to evaluate but is a prominent factor of voiding efficiency. Pressure-flow (P/Q) curves are supported by equations like:

\[Q = K P R^n \]

meaning that flow is a function of both pressure and resistance (or outlet section raised to a given power).

1. **Message:**
 - Voiding efficiency is a function of contractility and resistance and nomograms have to consider flow and pressure.

2. **Message:**
 - During the voiding phase, detrusor pressure (Pdet) is not a measure of detrusor contractility, (unless there is no flow).

Existing Obstruction Nomograms Applied to Women:

1. **Axelrod-Blaivas, 1987**
 - \(Pdet > 20 \text{ cmH}_2\text{O} \) and \(Q < 12 \text{ mL/sec} \)

2. **Massey-Abrams, 1988**
 - \(Pdet > 50 \text{ cmH}_2\text{O} \) and \(Q < 12 \text{ mL/sec} \)

3. **Chassagne et al., 1998**
 - \(Pdet > 20 \text{ cmH}_2\text{O} \) and \(Q < 15 \text{ mL/sec} \)

4. **Lemack-Zimmern, 2000**
 - \(Pdet > 21 \text{ cmH}_2\text{O} \) and \(Q < 12 \text{ mL/sec} \)

Diagnosis

Comparing female obstruction nomograms

<table>
<thead>
<tr>
<th>Pdet (cmH2O)</th>
<th>Q (mL/seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

3. Chassagne et al., Urology, 1998
4. Lemack, Zimmern, J Urol, 2000

Comparison

Massey, Axelrod and Chassaigne criteria superimposed graphically upon the classic male ICS nomogram for obstruction.

Not so different from man, but some women "invade" an unobstructed area indicating a globally lower urethral resistance.
The classic Male nomograms:
ICS for obstruction
Schafer for obstruction and detrusor contractility

Approximate correspondence of equivocal and obstructed areas of ICS's onto Schäfer's.

Massey, Axelrod, Chassagne and Lemack's female criteria superimposed graphically upon the male Schäffer's nomogram of obstruction and detrusor contractility.

Showing that female obstructive areas match to Schäffer's grade I to VII

Blaivas-Grous female nomogram for obstruction

Blaivas-Grous female superimposed to the male Schäffer's nomogram.
The unobstructed area (BG) matches 0 obstruction grade (Sch) and the slight obstruction zones (BG) roughly match grades I and II (Sch)

• YET,
 • BG NOMOGRAM USE FREE FLOW (FQ) AND DETRUSOR PRESSURE FROM DIFFERENT VOIDINGS.
 • DETRUSOR PRESSURE USED IS MAXIMUM DETRUSOR PRESSURE (PDETMAX) INSTEAD OF DETRUSOR PRESSURE AT MAXIMUM FLOW (PDETQMAX)
 • THE TWO DETRUSOR PRESSURE PARAMETERS MAY PROVE STATISTIICALLY SIMILAR, BUT IN THE INDIVIDUAL PATIENT...

• Q OR FQ – ENTUBATED OR FREE FLOW
 • DOES IT MATTER?

Mostly depends on catheter size. It certainly does matter with > 7 Fr
• **PDETMAX OR PDETQMAX?**
 - ARE THEY THE SAME?

 Yes, if they to close values, but...

 ![Graph showing Pdetmax and PdetQmax](image)

 ...quite different if they are distant enough!

 ![Graph showing Qmax and PdetQmax](image)

 ...changing diagnosis from unobstructed to moderately obstructed!!

Ideal features for a female PQ nomogram:

- Built after a female series including normal controls
- Assess Pressure and flow in the same voiding using small enough catheters with negligible urethral effect
- Have a scale for detrusor contractility evaluation
- Be independent of abdominal influence (Pves instead of Pdet?)

But, such nomogram is still not available or validated for women

In the meanwhile...

- Diagnosis of obstruction must be supported by other methods: video-urodynamics, ultrasound, EMG
- The usage of approved male nomograms with adequate adjustments may prove clinically useful
FEMALE OBSTRUCTION AFTER INCONTINENCE SURGERY

- Obstruction:
 - High detrusor pressure
 - With
 - Slow stream

- Indirect evidence of post-operative female voiding dysfunction
 - Lower volume
 - Interval for discomfort to void
 - Frequency
 - Urgency
 - Straining
 - Slight

- Indirect evidence is a burden
- Indicators or symptoms if there is no overt indication

- The non-consensual urodynamic parameters of obstruction lead to:
 - Underdiagnosis
 - Few urethrolysis indications
 - Permanent voiding dysfunction
 - Detrusor damage

- LUTD in females after anti-incontinence procedures

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>48.5 (20.3)</td>
</tr>
<tr>
<td>Mean parity (months)</td>
<td>5.6 (20)</td>
</tr>
<tr>
<td>Time to onset of symptoms (months)</td>
<td>3.9 (2.9)</td>
</tr>
<tr>
<td>Urodynamic stress incontinence</td>
<td>3.9 (2.7)</td>
</tr>
<tr>
<td>Urodynamic detrusor overactivity</td>
<td>4.5 (3.3)</td>
</tr>
<tr>
<td>Urodynamic voiding symptoms</td>
<td>4.6 (3.4)</td>
</tr>
<tr>
<td>Urodynamic symptoms in voiding symptoms</td>
<td>4.8 (3.6)</td>
</tr>
<tr>
<td>Male gender</td>
<td>36 (9.7)</td>
</tr>
<tr>
<td>Mean</td>
<td>35 (12.3)</td>
</tr>
</tbody>
</table>

- LUTD presentations

<table>
<thead>
<tr>
<th>Presentations</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower urinary tract symptoms</td>
<td>26 (9.7%)</td>
</tr>
<tr>
<td>Bladder instability</td>
<td>28 (9.7%)</td>
</tr>
<tr>
<td>No symptoms</td>
<td>19 (6.9%)</td>
</tr>
<tr>
<td>Increased voiding frequency</td>
<td>11 (4.1%)</td>
</tr>
<tr>
<td>Frequency</td>
<td>10 (3.7%)</td>
</tr>
<tr>
<td>Straining</td>
<td>8 (2.9%)</td>
</tr>
<tr>
<td>Straining bladder</td>
<td>7 (2.5%)</td>
</tr>
</tbody>
</table>
PATTERNS

1. Elevated Pressure and Poor Flow
2. Non-Elevated Pressure and Poor Flow
3. Non-Elevated Pressure and Poor Flow but Prolonged Flow Time
4. Poor Detrusor Contraction
5. Elevated Pressure and High Flow

PRESSURE-FLOW STUDIES ARE THE MAINSTAY FOR OBSTRUCTION DIAGNosis
- The association between pressure and flow in women is imprecise
- Male designed nomograms are not suitable for use in women
- The increase in iatrogenic obstruction cast light on female obstruction
- Slings operations can produce BDD in 6.9%
- As relief of obstruction is needed, a diagnosis is mandatory
FEMALE VOIDING NOMOGRAMS

PRINCIPLES & ADJUSTMENTS

Luis AbranchesMonteiro
Rio 2014

A LITTLE OF PHYSICS...

System with:
- a reservoir with volume
- a pumping engine with power
- an outlet with resistance

No matter if its is a man, a woman, a syringe, a fireman’s hose, etc

SPECIAL FEATURES OF LOWER URINARY TRACT:

- THE ENGINE HAS VARIABLE POWER DEPENDING ON
 - THE LENGTH OF MUSCULAR FIBRES OR BLADDER VOLUME
 - STANNO'S LAW
 - THE SHORTENING VELOCITY
 - HILL'S EQUATION
 - FUELED BY MICTURITION REFLEXES
 - CNS-BLADDER
 - URETHRO-VESICAL

STARLING'S LAW

HILL'S EQUATION

FUELED BY MICTURITION REFLEXES

CNS-BLADDER

URETHRO-VESICAL

SPECIAL FEATURES OF LOWER URINARY TRACT:

- THE OUTLET IS A DISTENSIBLE/COLLAPSIBLE/CONTRACTILE TUBE
 - WHEN RIGID, IS GOVERNED BY
 - POISEUILLE'S LAW DEPENDING ON FLOW CONTROLLING ZONE LEVEL WHERE
 \[Q = \frac{P \cdot R^4}{8} \]
 - WHEN COLLAPSIBLE/DISTENSIBLE
 - RADIUS IS DEPENDENT ON RESERVOIR'S PRESSURE AND THERE IS AN EQUATION FOR EACH MOMENT OF THE EMPTYING PHASE

OUTLET RESISTANCE EQUATION VARIES WITH PATHOLOGY.

RANGING:
- FROM URETHRAL RIGID STENOSIS...
- TO A ELASTIC COMPRESSION OF PROXIMAL URETHRA OF BPH...
- ENDING IN NORMAL DISTENSIBLE, LOW RESISTANCE FEMALE URETHRA

IN EACH CASE...

FLOW WILL INCREASE
- WITH BLADDER PRESSURE IN A LINEAR WAY, BUT...
- IN A QUADRATIC OR EVEN AT THE 4TH POWER WITH URETHRAL SECTION (RADIUS)
- AND...
 - IF DISTENSIBLE, RADIUS CAN INCREASE WITH BLADDER PRESSURE
FLOW IS MORE INFLUENCED BY RADIUS THAN PRESSURE ESPECIALLY IN LESS DISTENSIBLE OUTLETS (URETHRAL STENOSIS).

IN ELASTIC URETHRAS, PRESSURE ACTS IN TWO WAYS INCREASING FLOW:
- BY THE POISEUILLE/BERNOULLI EQUATION
- BY INCREASING THE URETHRAL RADIUS.

IN SUMMARY, OUR VARIABLES ARE:
- DETRUSOR FIBERS SHORTENING STRENGTH
- URETHRAL RADIUS AND ITS ELASTICITY

A LITTLE OF MATHS...
- IF $Q = KPR$, THEN SHORTENING OF DETRUSOR FIBERS RESULTS IN
 - PRESSURE IN BLADDER AND/OR
 - FLOW

IN OTHER WORDS,
- DETRUSOR CONTRACTION RESULTS IN BLADDER PRESSURE DEPENDING ON URETHRAL RESISTANCE.
- WHEN FLOW EXISTS, IT RESULTS IN LESS PRESSURE.
- OUR SYSTEM STATE VARIES THEN FROM
 - TOTAL OUTLET RESISTANCE (CLOSED URETHRA) AND MAXIMAL PRESSURE.
 - AND LOW OUTLET RESISTANCE, FLOW AND LESS PRESSURE.
• THEN, BLADDER PRESSURE (PDET) IS A FUNCTION OF:
 • DETRUSOR CONTRACTION
 • RESULTING FLOW

• IT ONLY REFLECTS DETRUSOR PERFORMANCE WHEN FLOW IS 0! (PURE ISOMETRIC CONTRACTION)

• WE KNOW THIS IS A GOOD CONTRACTION BECAUSE THERE IS A HIGH PDET

• WE KNOW THIS IS A GOOD CONTRACTION BECAUSE THERE IS A GOOD FLOW

• BUT, HOW GOOD ARE THEY?

• SINCE CONTRACTION GIVES RISE TO PDET AND FLOW WE MUST ZERO THE FLOW TO HAVE A PDET AS TRUE MEASURE OF CONTRACTION.

• SINCE BLADDER PRESSURE VARIES WIDELY WITH FLOW, DETRUSOR CONTRACTILITY CAN ONLY BE MEASURED IN A CLOSED URETHRA (MAXIMAL RESISTANCE)

• BUT…
 • SINCE DETRUSOR POWER VARIES WITHIN THE EMPTYING PHASE,
 • WE NEED TO MEASURE THE BLADDER PRESSURE AT THE MAXIMUM FLOW, BUT WITH NO FLOW!!!

• THE STOP TEST
 • URETHRA IS CLOSED SUDDENLY WHEN MAXIMUM FLOW IS REACHED
 • BALLOON OCCLUSION OF BLADDER NECK
 • IN THE PRECISE MOMENT OF MAXIMUM FLOW

• THEORETICAL EXTRAPOLATION OF STOP TEST:
 • THE PROJECTED ISOMETRIC PRESSURE (PIP)

• IN A GIVEN SYSTEM DESCRIBED BY A TWO VARIABLE PLOT OF PRESSURE AND FLOW, MAXIMUM FLOW PRESSURE CAN BE PROJECTED ONTO THE 0 FLOW IF WE FIND THE PROBABLE DIRECTION OF THE PROJECTION. THESE PROJECTIONS DEPEND ON THE MECHANICAL/ELASTIC PROPERTIES OF THE SYSTEM.

• ONCE FOUND THE PROBABLE PROJECTION, STOP TEST DOES NOT NEED TO BE DONE IN EVERY PATIENT AND A CONTRACTILITY SCALE CAN BE DRAWN.
A given pressure at the maximum flow (best detrusor shot?).

What would be the pressure in a stop test of 0 flow—isometric contraction?

Here?

Here?

Or there?

$p_{\text{det}}q_{\text{max}}$

In a number of stop tests in men the pressures at 0 flow run in a fairly linear and parallel fashion, although a more parabolic (Hill's equation) theoretical curve would be expected. Some simplicity is added for the sake of practical use.

In men, lines of $y = -5x$ slopes were most often found (Q in ml/sec to 5Q in cm H2O of pdet) — PIP5 (projected isometric pressure), recently named as Bladder Contractility Index (BCI).

A scale of probable pressure at 0 flow can be drawn with no more need of stop test.

Cases 1 and 2 have quite different values of Q and $p_{\text{det}}q_{\text{max}}$, but belong to the same class of contractility; they share the same $p_{\text{det}}q_0$.

High flow, very low pressure = good contraction.
Low flow, higher pressure = worse contraction.
Low flow, higher pressure = very good contraction (but obstructed).

Schäfer considered 7 degrees of contractility:
- Very Weak, Weak minus, Weak, plus, Normal minus, Normal plus and Strong after plotting hundreds of men, from non-obstructed (young and operated) to obstructed.
WHAT ABOUT WOMEN?

PROBLEMS:

- Some have abdominal contractions making impossible to determine what is the main driving force to generate the flow (detrusor or abdomen).
- Stop test are even less reliable because less ability to suddenly close the urethra.
- Urethra is often a distensible tube with more radius variability.
- But... the same principles should apply.

STOP TESTS in Women

Some women show a clear PIP5 but some have more vertical patterns, say PIP1 (the same value of Q in ml/sec as pdet in cm H2O) and some in between.

But, can we draw some pattern out of this variability?

1) Older women and those with higher flowrates and less urethral resistance tend to have lower PIP.
2) Higher flows and less obstruction have PIP closer to 1 probably reflecting a more parabolic distribution of Hill's equation.
3) Lower Q rates and higher pressures seem like men (PIP5).

• PIP1 MAY BE USEFUL FOR THE CLINICAL ASSESSMENT OF DETRUSOR CONTRACTION IN OLDER FEMALES
• BCI (PIP5) IS NOT SUITABLE IN THIS GROUP

A more parabolic design could be more closely adapted to female variations from PIP1 or less to PIP5 or more?

A closer attention to the pattern of Female stop-tests should be warranted.
Flow (Q) or Detrusor pressure (Pdet) or Vestical pressure (Pves)?

When a flow is generated by intravesical pressure, it can be influenced by the abdominal contraction and detrusor contraction.

But, only detrusor pressure is considered in existing pressure-flow plots. No pressure-flow plot using vesical pressure (Pves) have been tested.

Detrusor pressure plots are only valid with no abdominal activity!

Options:
- Keep PIP5 option (Schäfer’s)
- But not considering the exceptionally low pressure-high flows.
- Eventually exclude women older than 65.
- Definitely exclude the “abdominal” voidings.
- And profit from it’s simplicity, ease of use and clinical value long used in men.

And, what about the measure of urethral resistance in women?

A few more agreement in the literature...

Several nomograms already described:
- Massey-Abrams
- Lemke-Shahin
- Chassagne
- Blaivas-Groutz

Putting all together:
1) Detrusor performance and urethral resistance have to be measured to assess the increasingly frequent female voiding dysfunction.
2) Women have more variability of urethral resistance and detrusor performance.
3) Older women and those with very high flows have different “isovolumetric pressure projections” than the rest and than men.
4) Validated female obstruction nomograms are not so different from those of men.
5) Detrusor pressure/flow plots are not valid under abdominal “contamination”!
6) The boundaries of normality are less well defined than in men.
7) Continuous scales should be used not to stick to “normal/abnormal” terms.

Superimposition of several female nomograms for obstruction.
8) **THE USE OF PROGRESSIVELY THINNER CATHETERS IMPROVE INTUBATED FLOW PLOTS?**

9) **VESICAL PRESSURE (Pves INSTEAD OF Pdet) PLOTS CAN PREVENT THE MISLEADING EFFECT OF ABDOMINAL STRAIN?**

10) **MATHEMATICAL SIMPLIFICATION OF NOMOGRAMS SPEED UP THEIR (URGENT) CLINICAL USE?**

Thank you

- And

- Explore the [ICS Wiki]