

W14: Users' guide how to interpret scientific evidence –

important methodological insights

Workshop Chair: Marco Blanker, Netherlands 12 September 2017 11:00 - 12:30

Start	End	Topic Speakers					
11:00	11:05	General introduction Marco Blanker					
11:05	11:20	The interpretation of odds ratios for common conditions Ilse Hofmeester					
11:20	11:45	Statistical significance vs. patient-importance	Rufus Cartwright				
			Kari Tikkinen				
11:45	11:55	Risk factors	Marco Blanker				
11:55	12:20	Grade methodology	Rufus Cartwright				
			Kari Tikkinen				
12:20	12:30	Questions	All				

Speaker Powerpoint Slides

Please note that where authorised by the speaker all PowerPoint slides presented at the workshop will be made available after the meeting via the ICS website <u>www.ics.org/2017/programme</u> Please do not film or photograph the slides during the workshop as this is distracting for the speakers.

Aims of Workshop

Despite the growing evidence in the field of lower urinary tract symptoms, the development and interpretation of guidelines remains difficult. This workshop aims to provide ICS members (both guideline-developers and users) with important background knowledge to enhance the quality of future guidelines. Within the allotted time, we will focus on the following aspects:

- How to grade quality of evidence.
- What is a risk factor?
- Interpretation of odds ratios for common conditions.
- Statistical significance vs. patient importance

Learning Objectives

- 1. To know about the background of the GRADE methodology and how this is applied to modern guidelines.
- 2. To know how to interpret odds ratios for common conditions.
- 3. To know the difference between statistical significance and clinically relevant outcomes.

Learning Outcomes

After the course, the student will be able to:

- interpret findings that result from the GRADE methodology;
- know the difference between associated factors and true risk factors;
- interpret odds ratios for common conditions;
- compare odds ratios to relative risks (or rate ratios);
- make the difference between statistical significance and clinical relevance of outcomes;
- estimate the absolute risk difference based on relative risk reductions and prevalence rates.

Target Audience

all members invited

Advanced/Basic

Basic

Conditions for Learning

This will be an interactive workshop in which participants are encouraged to have an active role. Speakers will invite participants to ask questions and respond to the presentations.

Suggested Learning before Workshop Attendance

http://www.gradeworkinggroup.org/#pub

Website with synopsis for:

- Explanation about The GRADE working group;
- Why rate the certainty in the evidence and strength of recommendations;
- Criteria for applying or using GRADE

Suggested Reading

- Johnston BC et al. Do clinicians understand the size of treatment effects? A randomized survey across 8 countries. CMAJ. 2016;188(1):25-32 (abstract and introduction)

- Blanker MH et al. No evidence (yet) to support the statement "LUTS - an independent risk factor for cardiovascular disease". BJU Int. 2016 Feb 25. doi: 10.1111/bju.13456.

- Hofmeester I et al. The association between nocturia and nocturnal polyuria in clinical and epidemiological studies: a systematic review and meta-analyses. J Urol. 2014;191(4):1028-33

Ilse Hofmeester	 will elaborate on the interpretation of odds ratios for common conditions. Often, results from epidemiological studies present large odds ratios (ORs), or at least large ORs get much attention. Many physicians regard such high ORs as relevant for their patients. As a consequence, advises may enter guidelines, but is that always relevant? From what kind of study were the ORs derived? How should ORs be interpreted for different conditions with different prevalence? Ilse Hofmeester will take the association between nocturia and nocturnal polyuria as an example. Take home message: for the sound interpretation of odds ratios, information about the prevalence of the disease/outcome is needed; only for conditions with low prevalence, odds ratios may be interpreted as relative risks.
Kari Tikkinen & Rufus Cartwright	 will compare statistical considerations and patient-importance. What do p-values tell us about the clinical relevance of a described risk difference, or risk reduction? Relative risk reductions can result in large differences in absolute risk reductions, depending on the baseline risk of patients. Ultimately, patients are interested in absolute risk (reductions), and physicians should also be. The topic is illustrated with clinical scenarios, including examples from cancer screening and pharmacological prophylaxis. Epidemiological aspects covered in this part include the interpretation of a p-value, relative risk reduction, absolute risk reduction, risk difference, number needed to treat (NNT). Take home message: When considering treatment, patients are interested in their absolute risk reduction, which depend on their baseline risk; for a proper estimation of an absolute risk reduction, both baseline
	risk and relative risk reduction are needed.
Marco Blanker	 will discuss the qualifications of risk factors. Many patient characteristics are mentioned as risk factors, even from studies in which no causal associations can be distinguished. What are the requisites for a characteristic to become a "true" risk factor? The association between lower urinary tract symptoms and cardiovascular disease will illustrate this topic, by means of discussion of the (in)ability to define risk factors based on cross sectional studies. Take home message: A risk factor is any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury (WHO definition). Therefore, longitudinal data are required to find risk factors for diseases; from cross sectional studies, at most characteristics can be defined as 'associated to' some disease.
Rufus Cartwright & Kari Tikkinen	Many systematic reviews fail to adequately assess the quality of the evidence they synthesise, and many clinical guidelines lack transparency about their methods for deriving recommendations from that evidence. This talk will apply basic principles of clinical epidemiology to assessment of the quality of evidence, and explain the main tenets of the GRADE methodology, as the cornerstone of modern guideline development.
	Take home message: GRADE provides a systematic way to assess both the quality of evidence (that is, certainty in estimates), and interpret the size of a pooled effect based on that evidence. The GRADE approach separately considers the impact of bias from design factors, inconsistency in results, indirectness, imprecision, and publication bias. GRADE allows guideline authors to reach "strong" or "weak" recommendations, reflecting the extent to which we can be confident that desirable effects of an intervention outweigh the undesirable effects, and the extent to which that balance will apply for most patients, or vary with patients' own values and preferences.

W14 Users' guide how to interpret scientific evidence – important epidemiological insights

Kari Tikkinen Ilse Hofmeester Rufus Cartwright Marco Blanker

Marco H. Blanker	FLORENCE
Affiliations to disclose [†] : University of Groningen, University Medical Center Groningen, Department of General practice, Groningen, The Netherlands	😻 umcs
*At financial for specific the last year of that you may here with any business against the respect to the subjects mentioned having you pro- Funding for speaker to attend:	sentation
Self-funded Institution (non-industry) funded	

A shortened version of the handout has been provided on entrance to the hall A full handout for all workshops is available via the ICS website. Please silence all mobile phones Please refrain from taking video and pictures of the speakers and their slides. PDF versions of the slides (where approved) will be made available after the meeting via the ICS website.

General introduction

FLORENCE

Most physicians have difficulties in interpreting effect sizes ¹

This may hamper

- sound interpretation of literature
- sound interpretation of guidelines
- sound development of guidelines

1. Johnston et al. CMAJ 2015

Before lunch you will be able to: 💮 FLORENCE
Interpret and distinguish different outcome measures for associations, especially Odds Ratios for common conditions
Discuss the differences between statistical significance and clinical relevance of treatment outcomes
Discuss different aspects of risk factors
Tell others about the GRADE methodology

Who are you?	ICS 2017 FLORENCE
Personal introduction if you are a:	impossible, but please rise
nurse	resident
uro	ogist
researcher	GP
	(pelvic) physiotherapist
(uro)gynaecologist	other:

Who are you?

FLORENCE

Your input is more than welcome in this workshop

so feel free to interrupt, ask questions, or even correct us

	FLORENCE	
Affiliations to disclose [†] :		
No disclosures		
Funding for speaker to attend:		
X Self-funded		
Institution (non-industry) funded		
Sponsored by:		

Nocturia & nocturnal polyuria	FLORENCE
What's your interpretation of this OR	?
People with nocturia have nocturnal 5 times more often than those without nocturia — Don't know	Dolyuria Odds Ratio M-H, Fixed, 95% CI
das no	A D.2 1 5 20 nocturia

Interpretation of odds ratio's	FLORENCE
Back to basics!	
Relative risk estimates are based on a risk estimates in 2 or more groups	bsolute
Absolute risk estimates i for inter	mportant pretation

20 230 250 locturia - 30 720 750 otal 50 950 1000	Prevalence NP 5%	NP +	NP -	Total
locturia - 30 720 750 otal 50 950 1000	Nocturia +	20	230	250
otal 50 950 1000	Nocturia -	30	720	750
	īotal	50	950	1000

In	iterpretation	6	CS 2017 Lorence		
	Prevalence NP 25%	NP +	NP -	Total	
	Nocturia +	100	150	250	
	Nocturia -	150	600	750	
	Total	250	750	1000	

	inerne		i uis	case	mma			
Prevalence NP 5.0%	Nocturnal Polyuria	No No Pol	octurnal yuria	Total	Prevalence NP 25.0%	Nocturr Polyuri	al No Nocturnal a Polyuria	Total
Nocturia +	20	2	30	250	Nocturia +	100	150	250
Nocturia -	30	7	20	750	Nocturia -	150	600	750
Total 50 950		1000	Total	250	750	1000		
P	revale	nce		600 5%	400	1000	60%	
0	dds ra	tio	2	.09	2.67		26.00	
R	elative	risk	2	.00	2.00		2.00	

Interpretation of odds ratio's
Association between OR and RR depends on prevalence of condition
Odds ratio's look like relative risks,
but only if prevalence of condition is <u>small</u> ORs may be interpreted as RR <u>Rare disease assumption</u>

Nocturia & nocturnal polyuria	A ICS 2017 FLORENCE
What's your interpretation of this	s OR?
People with nocturia have noctur 5 times more often than those without nocturia Don't know = correct	rnal polyuria
	0.05 0.2 1 5 20 no nocturia nocturia

Nocturia & noc	turn	al p	olyur	ia	FLORENCE
What's your interpretation of this OR? nocturia no nocturia Odds Ballo					
Study or Subgroup	Events	Total	Events	Total	M-H, Fixed, 95% CI
NPi 0.33: Bing [18]	44	75	15	75	
NPi 0.33: Rembratt [15]	97	116	40	108	
NPi 0.33: van Doorn [10]	340	370	483	689	
NPi 0.33:Swithinbank [11]	25	33	81	194	
NPi 0.35: Johnson [19]	22	35	2	10	
NPi 0.35: Ku [16]	27	38	29	66	
NUP/daytimeUP 1: Udo [17]	69	84	185	366	
NUV 10ml/kgBW: Homma [14]	19	39	5	22	0.2 1 5 20 no nocturia nocturia
		790		1530	
	643		840		
Prev	alence	= (643	+840)/	(790+1	1530) = 63.9%
		(0.0		(750)	

Nocturia & nocturnal polyuria
What's your interpretation of this OR?
Prevalence of nocturnal polyuria 63.9%
(well above 10%)
Relative risk =
$$\frac{OR}{(1-p) + (p * OR)}$$

Relative risk: 1.41

In summary	ICS 2017 FLORENCE
Relative risk estimates most ofte	en used
Absolute risk estimates are impo interpretation	ortant for
For proper interpretation of odd	ds ratio's,
information on prevalence of co vital	ondition is

The interpretation of odds ratios for common conditions

Thank you for your attention

Statistical considerations versus patient-importance Kari Tikkinen Rufus Cartwright

Users' guide how to interpret scientific evidence

EL ORENCI

What's a risk factor?

True or false?

Smoking is a risk factor for lung cancer Vaginal delivery is a risk factor for Pelvic Organ Prolaps Smoking is a risk factor for bladder cancer Smoking is a risk factor for cardiovascular disease (CVD)

Lower urinary tract symptons are arisk factor for CVD

What's a risk factor?

ELORENCE

Lower urinary tract symptoms (LUTS) – an independent risk factor for cardiovascular disease (CVD) G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015

Editorial comment on

Functional Urology

Increase of Framingham cardiovascular disease risk score is associated with severity of lower urinary tract symptoms

Giorgio I. Russo, Tommaso Castelli, Salvatore Privitera, Eugenia Fragalà, Vincenzo Favilla, Giulio Reale, Daniele Urzi, Sandro La Vignera⁺, Rosita A. Condorelli⁺, Aldo E. Calagera⁺, Sebastiano Climino and Giuseppe Morgia Department el Uology. and "Department of Medical and Paediatic Sciences. Section of Endocrinology. Andrology and Internat Medicen. University of Cotania. Catoma. Naty

What's a risk factor?

independent risk factor for cardiovascular disease (CVD) G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015

What is your interpretation of this statement?

What's a risk factor?

FLORENCE

Lower urinary tract symptoms (LUTS) – an independent risk factor for cardiovascular disease (CVD) G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015

What is needed for this statement to be true?

What is in fact a risk factor?

World Health Organization: A risk factor is any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury.

What's a risk factor? Iss 2017 FLORENCE BJUU Functional Urology Increase of Framingham cardiovascular disease risk score is associated with severity of lower urinary tract symptoms Crosssectional study 336 Consecutive patients with BPH-related LUTS Assessment of Framingham Heart Risk score

(based on age, HDL, total cholesterol level, systolic blood pressure, anti-hypertensive medication use, diabetes and current smoking status)

A Systematic Review and Meta-analysis

What's a risk factor

FLORENCE

Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis

Objective: To evaluate whether LUTS severity can be considered as a significant risk factor of major adverse cardiac events (MACE) in the male population.

Authors included all cross-sectional & longitudinal trials enrolling men, comparing prevalence/incidence of MACE in men with moderate to severe LUTS and those without LUTS or with mild LUTS.

What's a risk factorMale Lower Urinary Tract Symptoms and Cardiovascular Events:A Systematic Review and Meta-analysisObjective: To evaluate whether LUTS severity can be
considered as a significant risk factor of major adverse
cardiac events (MACE) in the male populationAuthors included all cross-sectional & longitudinal
trials enrolling men, comparing prevalence/incidence
of MACE in men with moderate to severe LUTS and
those without LUTS or with mild LUTS

What's a risk factor	CS 2017 What's a risk
Male Lower Urinary Tract Symptoms a A Systematic Review and Meta-analysi	and Cardiovascular Events: Male Lower Urinary T is A Systematic Review
5 studies with 25,494 patients a	nd 2,291 MACE. 5 studies with 2
Authors included all cross-section trials enrolling men, comparing	prevalence/incidence prevalence/incidence the sample (OR:
of MACE in men with moderate to those without LUTS or with mild L	I LUTS BUT:
	No adjustment f

What's a risk factorICS 2017
FLORENCEIale Lower Urinary Tract Symptoms and Cardiovascular Events:
Systematic Review and Meta-analysis5 studies with 25,494 patients and 2,291 MACE.Presence of moderate to severe LUTS associated with
increased incidence of MACE compared with the rest of
the sample (OR: 1.68; 1.13–2.50)BUT:
No adjustment for confounders
No exclusion of patients with MACE/CVD at baseline

What's a risk factor

EL ORENCE

Do lower urinary tract symptoms predict cardiovascular diseases in older men? A systematic review and meta-analysis

iris I. Bouwman¹ · Maarten J. H. Voskamp² · Boudewijn J. Kollen¹ · Rien J. M. Nijman² · Wouter K. van der Helde¹ · Marco H. Blanker¹ World J Urol 2015;33:1911–20

5 studies with 6,027 (LUTS) & 18,993 (no LUTS) men

All without CVD at baseline

Follow-up period 5 - 17 years

2,780 CVD events

No clear association between CVD and LUTS [pooled effect size: hazard ratio 1.09 (95 % Cl 0.90–1.31)].

FLORENC

What's a risk factor?

FLORENCE

Term might lead to confusion, as definitions differ Most often used in epidemiology:

- particular outcome will occur after particular exposure
- an exposure that is statistically related to an outcome

Risk factors may be immutable or modifiable

Uncertainty about what strength of association is needed

What's a risk factor?

Related terms:

Risk marker: attribute/exposure associated with increased probability of outcome, but not necessarily a causal factor

Determinant: attribute/exposure that increases probability of outcome

Modifiable risk factor: a determinant that can be modified by intervention, thereby reducing the probability of disease

What's a risk factor?

FLORENCE

In case of LUTS & CVD

- In those with CVD: LUTS seems to be associated BUT: CVD history itself is major predictor of new CVD
- In those without CVD: no association

Most probably: LUTS and CVD share common risk factors If so, LUTS might be a risk marker

W14 Users' guide how to interpret scientific evidence – important epidemiological insights

General discussion

FLORENCE

Interpreting the Evidence

Willingness to fund mammography screening

- program A reduces the rate of dying from breast cancer by 33% (p=0.001)
- program B increases the rate of patients <u>not</u> dying from breast cancer from 99.82% to 99.88% (p=0.001)
- program C means that 1,667 women needed to be screened yearly for 7 years to prevent one death from breast cancer (p=0.001)

Example: VA hypertension study				
Mortality after 5 years of treatment				
	Controls	Treated	RRR	
DBP (90 – 104)	0.074	0.059	<u>0.074 - 0.059</u> 0.074	
			20%	
DBP, diastolic blood pre	ssure			

Relative risk reduction (RRR)				
	Control	Treat- ment	RRR	
TOD+	0.20	0.16	20%	
TOD-	0.057	0.045	21%	
TOD, targe	et organ damage	2		

Absolute risk reduction (ARR)					
	Control	Treat- ment	RRR	ARR	
TOD+	0.20	0.16	20%	4%	
TOD-	0.057	0.045	21%	1.2%	
TOD, target organ damage					

Number needed to treat (NNT)						
		Treat-				
	Control	ment	RRR	ARR	NNT	
TOD+	0.20	0.16	20%	4%	25	
TOD-	0.057	0.045	21%	1.2%	83	
TOD, targe	TOD, target organ damage					

Patient with DVT

Completes 6 months prophylaxis

Question: continue or not?

Doctor: continuing reduces risk of recurrence by 33%

chance unlikely to explain the difference (p=0.001)

What does patient understand?

Is there something missing?

Patients with atrial fibrillation

CHADS₂: congestive heart failure; hypertension; age >75; diabetes; prior stroke

Risk of stroke varies

•	CHADS ₂ 0:	8	per 1,000 per year
	4		

- CHADS₂ 1: 22 per 1,000 per year
 CHADS₂ 2: 45 per 1,000 per year
- CHADS₂ 3: 96 per 1,000 per year

Warfarin constant 2/3 relative risk reduction

•	CHADS ₂ 0:	5	per 1,000 per year
•	CHADS ₂ 1:	14	per 1.000 per vear

- CHADS₂ 2: 40 per 1,000 per year
- CHADS₂ 3: 64 per 1,000 per year

Measures of Relative Effect

- Relative risk
- Relative risk reduction
- Odds ratio
- Relative odds reduction
- Hazard ratio

Small, medium or large?

VTE prophylaxis in 65 year old man, COPD exacerbation, anticipated walking in hall day 3, hospitalization

RRR	50%			
Baseline risk	4/1,000			
Risk difference	2/1,000	so, NNT 500		
Balance in favour of treatment?				

Small, medium or large?

VTE prophylaxis in 65 year old man, disseminated cancer, severe pneumonia, likely bed-bound for at least 3 days

RRR	50%	
Baseline risk	100/1,000	
Risk difference	50/1,000	so, NNT 20
Balance in favou	r of treatment?	

Summary

VTE, venous thromboembolism

Relative estimates: RR, OR, HR

Absolute estimates: RD (ARR), NNT

Ultimately patients interested in absolute risk (reductions)

Patients not interested in p-values or relative estimates

Relative risk reductions constant across patients, absolute risk reductions not

So, to get absolute risk reductions, need baseline risk and relative risk reductions

Extra slides		

Risk Odds 0.8
0.8

Risk	Odds
0.8	0.8/0.2 = 4.0

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5
0.25	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5
0.25	0.25/0.75 = 0.33

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5
0.25	0.25/0.75 = 0.33
0.20	

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5
0.25	0.25/0.75 = 0.33
0.20	0.20/0.80 = 0.25

Risk	Odds
0.8	0.8/0.2 = 4.0
0.66	0.66/0.33 = 2.0
0.6	0.6/0.4 = 1.5
0.4	0.4/0.6 = 0.66
0.33	0.33/0.66 = 0.5
0.25	0.25/0.75 = 0.33
0.20	0.20/0.80 = 0.25
0.10	0.1/0.9 = 0.11

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment:	:	

		Dead	Alive	
	Treatment	20	80	
	Control	40	60	
R	isk in treatment:	20%		

	Dead	Alive
Treatment	20	80
Control	40	60
isk in treatment: isk in control:	: 20%	

	Dead	Alive
Treatment	20	80
Control	40	60
tisk in treatment tisk in control: 40 tisk ratio:	: 20%)%	

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment: 20% Risk in control: 40% Risk ratio: 0.5 (50%)		

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment: Risk in control: 40 Risk ratio: 0.5 (50	: 20% Odds)% %)	in treatment: 2

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment Risk in control: 40 Risk ratio: 0.5 (50	: 20% Odds)% %)	in treatment: 259

		Dead		Alive	
Treat	ment	20		80	
Cor	ntrol	40		60	
Risk in tro Risk in co Risk ratio	eatment ntrol: 40 : 0.5 (50	: 20% Od)% Od %)	ds ds	in treatment: 25 in control:	59

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment: Risk in control: 40 Risk ratio: 0.5 (50	: 20% Odds)% Odds %)	in treatment: 25 in control: 67%

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment Risk in control: 40 Risk ratio: 0.5 (50	: 20% Odds 0% Odds %) Odds	in treatment: 25 in control: 67% ratio:

	Dead	Alive
Treatment	20	80
Control	40	60
Risk in treatment Risk in control: 40 Risk ratio: 0.5 (50	: 20% Odds 0% Odds %) Odds	in treatment: 25 in control: 67% ratio: 0.37 (37%
	Absolute effect?	

What's a risk facto	or? ICS 2017 FLORENCE
Lower urinary tract sy	rmptoms (LUTS) – an
independent risk fact	tor for cardiovascular disease
(CVD)	G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015
Editorial comment on	
BJUI	Functional Urology
Increase of Framingh	am cardiovascular disease
risk score is associate	ed with severity of lower
urinary tract symptom	1s
Giorgio I. Russo, Tommaso Castelli, S	alvatore Privitera, Eugenia Fragalà, Vincenzo
Favilla, Giulio Reale, Daniele Urzi, Sar	ndro La Vignera*, Rosita A. Condorelli*, Aldo E.

Calogero*, Sebastiano Cimino and Giuseppe Morgia

What's a risk factor?

Lower urinary tract symptoms (LUTS) – an independent risk factor for cardiovascular disease (CVD) G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015

ELORENC

ELORENC

What is your interpretation of this statement?

What's a risk factor?

FLORENCE

Lower urinary tract symptoms (LUTS) – an independent risk factor for cardiovascular disease (CVD) G. Jackson, M.G. Kirby, R. Rosen, BJU Int 2015

What is needed for this statement to be true?

What is in fact a risk factor?

World Health Organization: A risk factor is any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury.

What's a risk factor?

Developing disease (in the future)

Causal association between risk factor & disease

True association (not explained by other variables)

Ask yourself "why would LUTS cause CVD?"

World Health Organization: A risk factor is any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury.

What's a risk factor

FLORENCE

Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis

Objective: To evaluate whether LUTS severity can be considered as a significant risk factor of major adverse cardiac events (MACE) in the male population.

Authors included all cross-sectional & longitudinal trials enrolling men, comparing prevalence/incidence of MACE in men with moderate to severe LUTS and those without LUTS or with mild LUTS.

What's a risk factor

FLORENC

Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis

Objective: To evaluate whether LUTS severity can be considered as a significant risk factor of major adverse cardiac events (MACE) in the male population

Authors included all cross-sectional & <u>longitudinal</u> <u>trials</u> enrolling men, comparing prevalence/<u>incidence</u> of MACE in men with moderate to severe LUTS and those without LUTS or with mild LUTS

What's a risk factor CCS 2017 Elorence Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis 5 studies with 25,494 patients and 2,291 MACE. Authors included all cross-sectional and longitudinal trials enrolling men, comparing prevalence/incidence of MACE in men with moderate to severe LUTS and those without LUTS or with mild LUTS

What's a risk factor CS2017 Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis 5 studies with 25,494 patients and 2,291 MACE. Presence of moderate to severe LUTS associated with increased incidence of MACE compared with the rest of the sample (OR: 1.68; 1.13–2.50) BUT: No adjustment for confounders No exclusion of patients with MACE/CVD at baseline

What's a risk factor?

FLORENCE

Term might lead to confusion, as definitions differ Most often used in epidemiology:

- particular outcome will occur after particular exposure
- an exposure that is statistically related to an outcome

Risk factors may be immutable or modifiable

Uncertainty about what strength of association is needed

What's a risk factor?

FLORENC

Related terms:

Risk marker: attribute/exposure associated with increased probability of outcome, but not necessarily a causal factor

Determinant: attribute/exposure that increases probability of outcome

Modifiable risk factor: a determinant that can be modified by intervention, thereby reducing the probability of disease

What's a risk factor?

FLORENCE

In case of LUTS & CVD

- In those with CVD: LUTS seems to be associated BUT: CVD history itself is major predictor of new CVD
- In those without CVD: no association

Most probably: LUTS and CVD share common risk factors

If so, LUTS might be a risk marker

	ICS 2017 FLORENCE

Guidelines and clinicians

- increasingly, clinicians rely on formal guidelines
- strong recommendations
 - strong methods
 - large precise effect
 - few down sides of therapy
- weak recommendations
 - weak methods
 - imprecise estimate
 small effect
 - substantial down sides

Proliferation of systems Image: Common international grading Common international grading Image: Common display="block">Image: Common display="block" block" • GRADE (Grades of recommendation, assessment, development and evaluation) Image: Common display="block">Image: Common display="block" block" • international group Image: Common display="block">Image: Common display="block" block"

- Australian NMRC, SIGN, USPSTF, WHO, NICE, Oxford CEBM, CDC, CC
- ~ 35 meetings over last 14 years
 (~10 80 attendants now 300 contributors)

Grading system – for what?

- interventions
 - management strategy 1 versus 2
- what grade is **not** about
 - individual studies (body of evidence)

What GRADE is not primarily about

- diagnostic accuracy questions
 - in patients with a sore leg, what is the accuracy of a blood test (D-Dimer) in sorting out whether a deep venous thrombosis is the cause of the pain
- prognosis
- what it is about: diagnostic impact
 - are patients better off (improved outcomes) when doctors use the d-dimer test

Determinants of quality

- RCTs start high
- observational studies start low
- what can lower confidence?

What can lower confidence?

- clue 1
 - lack of blinding in an RCT
- clue 2
 - RCT loses ½ patients to follow-up
- high risk of bias in RCTs lowers confidence

Clue: Have a look at the forest plot below – Infections with short and long term antibiotics after open fractures

Clue: Have a look at the forest plot below Aspirin in primary prophylaxis

1.2.2 Myocardial infan	rction						
BDT	169	3429	88	1710	0.96 [0.75, 1.23]	1988	
PHS	139	11037	239	11034	0.58 [0.47, 0.72]	1989	
HOT	82	9399	127	9391	0.65 [0.49, 0.85]	1998	
TPT	69	1268	98	1272	0.71 [0.52, 0.95]	1998	
PPP	19	2226	28	2269	0.69 [0.39, 1.23]	2001	
WHS	198	19934	193	19942	1.03 [0.84, 1.25]	2005	
JPAD	12	1262	14	1277	0.87 [0.40, 1.87]	2008	
POPADAD	76	638	69	638	1.10 [0.81, 1.50]	2008	
AAA	90	1675	86	1675	1.05 [0.78, 1.40]	2010	
Subtotal (95% CI)		50868		49208	0.83 [0.69, 1.00]		•
Total events	854		942				~

Any concerns?

Another reason for rating down: inconsistency

.2.2 Myocardial infar	ction						
BDT	169	3429	88	1710	0.96 [0.75, 1.23]	1988	
PHS	139	11037	239	11034	0.58 [0.47, 0.72]	1989	
IOT	82	9399	127	9391	0.65 [0.49, 0.85]	1998	
PT	69	1268	98	1272	0.71 [0.52, 0.95]	1998	
PP	19	2226	28	2269	0.69 [0.39, 1.23]	2001 -	
VHS	198	19934	193	19942	1.03 [0.84, 1.25]	2005	
PAD	12	1262	14	1277	0.87 [0.40, 1.87]	2008 *	
OPADAD	76	638	69	638	1.10 [0.81, 1.50]	2008	
AA	90	1675	86	1675	1.05 [0.78, 1.40]	2010	
ubtotal (95% CI)		50868		49208	0.83 [0.69, 1.00]		-
otal events	854		942				~

More reasons to lose confidence

- RCTs show less UI after new intervention
 - patients in RCTs 40 to 70
 - your patient 90
- are you confident?
- indirectness of population
 older, sicker or more co-morbidity

More reasons to lose confidence

- operation for lap mesh prolapse repair
- technically challenging

 frequent complications
- RCTs: lap surgery decreases recurrence

 only top surgeons participate in the RCTs
- are you confident?
- indirectness of intervention

Another reason to lose confidence

- some trials never get published
- "negative" studies more likely
- biased sample of studies

 overestimates of treatment effect

Study Design	Confidence in estimates	Lower if	Higher if
Randomised trial	High	Risk of bias	Large effect
		- 1 Serious	+1 Large
		-2 Very serious	+2 Very large
		Inconsistency	Dose response
	Moderate	-1 Serious	+1 Evidence of a gradient
		-2 Very serious	
		1000 C	All plausible confounding
		Indirectness	+1 Would reduce a
Observational study	Low	-1 Serious	demonstrated effect or
		-2 Very serious	
			+1 Would suggest a
		Imprecision	spurious effect when
	Very low	-1 Serious	results show no effect
		-2 Very serious	
		D. bill on block	
		Publication bias	
	1	-I LIKERY	

Strength of Recommendation

- strong recommendation

 benefits clearly outweigh risks/hassle/cost
 - risk/hassle/cost clearly outweighs benefit

- what can downgrade strength?
- low confidence in estimates
- close balance between up and downsides

Risk/Benefit tradeoff

- aspirin after myocardial infarction
 - 25% reduction in relative riskside effects minimal, cost minimal
 - benefit obviously much greater than risk/cost
- warfarin in low risk atrial fibrillation
 - warfarin reduces stroke vs ASA by 50%
 - but if risk only 1% per year, ARR 0.5%
 - increased bleeds by 1% per year

Conclusion

- clinicians, policy makers need summaries

 quality of evidence
 strength of recommendations
 - strength of recommendation
- explicit rules

 transparent, informative
- GRADE
 - simple, transparent, systematic
 - increasing wide adoption
 - great opportunity for teaching EBHC